Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131088
Название: | ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE |
Авторы: | Baransky, V. A. Senchonok, T. A. |
Дата публикации: | 2023 |
Издатель: | Krasovskii Institute of Mathematics and Mechanics |
Библиографическое описание: | Baransky, V & Senchonok, T 2023, 'ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE', Ural Mathematical Journal, Том. 9, № 2, стр. 36-45. https://doi.org/10.15826/umj.2023.2.003 Baransky, V., & Senchonok, T. (2023). ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE. Ural Mathematical Journal, 9(2), 36-45. https://doi.org/10.15826/umj.2023.2.003 |
Аннотация: | An integer partition, or simply, a partition is a nonincreasing sequence λ = (λ1, λ2,…) of nonnegative integers that contains only a finite number of nonzero components. The length ℓ(λ) of a partition λ is the number of its nonzero components. For convenience, a partition λ will often be written in the form λ = (λ1,…,λt), where t ≥ ℓ(λ); i.e., we will omit the zeros, starting from some zero component, not forgetting that the sequence is infinite. Let there be natural numbers i, j ∈ {1,…,ℓ(λ) + 1} such that (1) λi − 1 ≥ λi+1; (2) λj−1 ≥ λj + 1; (3) λi = λj + δ, where δ ≥ 2. We will say that the partition η = (λ1,…, λi − 1, …, λj + 1, …, λn) is obtained from a partition λ = (λ1,…, λi,…, λj,…, λn) by an elementary transformation of the first type. Let λi − 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces λ by η = (λ1,…,λi−1, λi − 1, λi+1, …) will be called an elementary transformation of the second type. The authors showed earlier that a partition µ dominates a partition λ if and only if λ can be obtained from µ by a finite number (possibly a zero one) of elementary transformations of the pointed types. Let λ and µ be two arbitrary partitions such that µ dominates λ. This work aims to study the shortest sequences of elementary transformations from µ to λ. As a result, we have built an algorithm that finds all the shortest sequences of this type. © 2023, Krasovskii Institute of Mathematics and Mechanics. All rights reserved. |
Ключевые слова: | ELEMENTARY TRANSFORMATION FERRERS DIAGRAM INTEGER PARTITION INTEGER PARTITIONS LATTICE |
URI: | http://elar.urfu.ru/handle/10995/131088 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 59690644 |
Идентификатор SCOPUS: | 85180819375 |
Идентификатор PURE: | 50639695 |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2023.2.003 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85180819375.pdf | 144,24 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons