Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131088
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBaransky, V. A.en
dc.contributor.authorSenchonok, T. A.en
dc.date.accessioned2024-04-05T16:38:45Z-
dc.date.available2024-04-05T16:38:45Z-
dc.date.issued2023-
dc.identifier.citationBaransky, V & Senchonok, T 2023, 'ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE', Ural Mathematical Journal, Том. 9, № 2, стр. 36-45. https://doi.org/10.15826/umj.2023.2.003harvard_pure
dc.identifier.citationBaransky, V., & Senchonok, T. (2023). ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE. Ural Mathematical Journal, 9(2), 36-45. https://doi.org/10.15826/umj.2023.2.003apa_pure
dc.identifier.issn2414-3952-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85180819375&doi=10.15826%2fumj.2023.2.003&partnerID=40&md5=af909d6c931751154c083c9909aec4a91
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/download/670/pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131088-
dc.description.abstractAn integer partition, or simply, a partition is a nonincreasing sequence λ = (λ1, λ2,…) of nonnegative integers that contains only a finite number of nonzero components. The length ℓ(λ) of a partition λ is the number of its nonzero components. For convenience, a partition λ will often be written in the form λ = (λ1,…,λt), where t ≥ ℓ(λ); i.e., we will omit the zeros, starting from some zero component, not forgetting that the sequence is infinite. Let there be natural numbers i, j ∈ {1,…,ℓ(λ) + 1} such that (1) λi − 1 ≥ λi+1; (2) λj−1 ≥ λj + 1; (3) λi = λj + δ, where δ ≥ 2. We will say that the partition η = (λ1,…, λi − 1, …, λj + 1, …, λn) is obtained from a partition λ = (λ1,…, λi,…, λj,…, λn) by an elementary transformation of the first type. Let λi − 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces λ by η = (λ1,…,λi−1, λi − 1, λi+1, …) will be called an elementary transformation of the second type. The authors showed earlier that a partition µ dominates a partition λ if and only if λ can be obtained from µ by a finite number (possibly a zero one) of elementary transformations of the pointed types. Let λ and µ be two arbitrary partitions such that µ dominates λ. This work aims to study the shortest sequences of elementary transformations from µ to λ. As a result, we have built an algorithm that finds all the shortest sequences of this type. © 2023, Krasovskii Institute of Mathematics and Mechanics. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceUral Mathematical Journal2
dc.sourceUral Mathematical Journalen
dc.subjectELEMENTARY TRANSFORMATIONen
dc.subjectFERRERS DIAGRAMen
dc.subjectINTEGER PARTITIONen
dc.subjectINTEGER PARTITIONS LATTICEen
dc.titleON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICEen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.rsi59690644-
dc.identifier.doi10.15826/umj.2023.2.003-
dc.identifier.scopus85180819375-
local.contributor.employeeBaransky, V.A., Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeSenchonok, T.A., Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federationen
local.description.firstpage36-
local.description.lastpage45-
local.issue2-
local.volume9-
local.contributor.departmentUral Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federationen
local.identifier.pure50639695-
local.identifier.eid2-s2.0-85180819375-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85180819375.pdf144,24 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons