Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131088
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Baransky, V. A. | en |
dc.contributor.author | Senchonok, T. A. | en |
dc.date.accessioned | 2024-04-05T16:38:45Z | - |
dc.date.available | 2024-04-05T16:38:45Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Baransky, V & Senchonok, T 2023, 'ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE', Ural Mathematical Journal, Том. 9, № 2, стр. 36-45. https://doi.org/10.15826/umj.2023.2.003 | harvard_pure |
dc.identifier.citation | Baransky, V., & Senchonok, T. (2023). ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE. Ural Mathematical Journal, 9(2), 36-45. https://doi.org/10.15826/umj.2023.2.003 | apa_pure |
dc.identifier.issn | 2414-3952 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180819375&doi=10.15826%2fumj.2023.2.003&partnerID=40&md5=af909d6c931751154c083c9909aec4a9 | 1 |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/download/670/pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/131088 | - |
dc.description.abstract | An integer partition, or simply, a partition is a nonincreasing sequence λ = (λ1, λ2,…) of nonnegative integers that contains only a finite number of nonzero components. The length ℓ(λ) of a partition λ is the number of its nonzero components. For convenience, a partition λ will often be written in the form λ = (λ1,…,λt), where t ≥ ℓ(λ); i.e., we will omit the zeros, starting from some zero component, not forgetting that the sequence is infinite. Let there be natural numbers i, j ∈ {1,…,ℓ(λ) + 1} such that (1) λi − 1 ≥ λi+1; (2) λj−1 ≥ λj + 1; (3) λi = λj + δ, where δ ≥ 2. We will say that the partition η = (λ1,…, λi − 1, …, λj + 1, …, λn) is obtained from a partition λ = (λ1,…, λi,…, λj,…, λn) by an elementary transformation of the first type. Let λi − 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces λ by η = (λ1,…,λi−1, λi − 1, λi+1, …) will be called an elementary transformation of the second type. The authors showed earlier that a partition µ dominates a partition λ if and only if λ can be obtained from µ by a finite number (possibly a zero one) of elementary transformations of the pointed types. Let λ and µ be two arbitrary partitions such that µ dominates λ. This work aims to study the shortest sequences of elementary transformations from µ to λ. As a result, we have built an algorithm that finds all the shortest sequences of this type. © 2023, Krasovskii Institute of Mathematics and Mechanics. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | unpaywall |
dc.source | Ural Mathematical Journal | 2 |
dc.source | Ural Mathematical Journal | en |
dc.subject | ELEMENTARY TRANSFORMATION | en |
dc.subject | FERRERS DIAGRAM | en |
dc.subject | INTEGER PARTITION | en |
dc.subject | INTEGER PARTITIONS LATTICE | en |
dc.title | ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 59690644 | - |
dc.identifier.doi | 10.15826/umj.2023.2.003 | - |
dc.identifier.scopus | 85180819375 | - |
local.contributor.employee | Baransky, V.A., Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federation | en |
local.contributor.employee | Senchonok, T.A., Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federation | en |
local.description.firstpage | 36 | - |
local.description.lastpage | 45 | - |
local.issue | 2 | - |
local.volume | 9 | - |
local.contributor.department | Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federation | en |
local.identifier.pure | 50639695 | - |
local.identifier.eid | 2-s2.0-85180819375 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85180819375.pdf | 144,24 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons