Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131009
Название: | Exploring Propagating Soliton Solutions for the Fractional Kudryashov–Sinelshchikov Equation in a Mixture of Liquid–Gas Bubbles under the Consideration of Heat Transfer and Viscosity |
Авторы: | Ali, R. Hendy, A. S. Ali, M. R. Hassan, A. M. Awwad, F. A. Ismail, E. A. A. |
Дата публикации: | 2023 |
Издатель: | Multidisciplinary Digital Publishing Institute (MDPI) |
Библиографическое описание: | Ali, R, Hendy, AS, Ali, MR, Hassan, AM, Awwad, FA & Ismail, EAA 2023, 'Exploring Propagating Soliton Solutions for the Fractional Kudryashov–Sinelshchikov Equation in a Mixture of Liquid–Gas Bubbles under the Consideration of Heat Transfer and Viscosity', Fractal and Fractional, Том. 7, № 11, 773. https://doi.org/10.3390/fractalfract7110773 Ali, R., Hendy, A. S., Ali, M. R., Hassan, A. M., Awwad, F. A., & Ismail, E. A. A. (2023). Exploring Propagating Soliton Solutions for the Fractional Kudryashov–Sinelshchikov Equation in a Mixture of Liquid–Gas Bubbles under the Consideration of Heat Transfer and Viscosity. Fractal and Fractional, 7(11), [773]. https://doi.org/10.3390/fractalfract7110773 |
Аннотация: | In this research work, we investigate the complex structure of soliton in the Fractional Kudryashov–Sinelshchikov Equation (FKSE) using conformable fractional derivatives. Our study involves the development of soliton solutions using the modified Extended Direct Algebraic Method (mEDAM). This approach involves a key variable transformation, which successfully transforms the model into a Nonlinear Ordinary Differential Equation (NODE). Following that, by using a series form solution, the NODE is turned into a system of algebraic equations, allowing us to construct soliton solutions methodically. The FKSE is the governing equation, allowing for heat transmission and viscosity effects while capturing the behaviour of pressure waves in liquid–gas bubble mixtures. The solutions we discover include generalised trigonometric, hyperbolic, and rational functions with kinks, singular kinks, multi-kinks, lumps, shocks, and periodic waves. We depict two-dimensional, three-dimensional, and contour graphs to aid comprehension. These newly created soliton solutions have far-reaching ramifications not just in mathematical physics, but also in a wide range of subjects such as optical fibre research, plasma physics, and a variety of applied sciences. © 2023 by the authors. |
Ключевые слова: | CONFORMABLE FRACTIONAL DERIVATIVES FRACTIONAL KUDRYASHOV–SINELSHCHIKOV EQUATION NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS SOLITONS VARIABLE TRANSFORMATION |
URI: | http://elar.urfu.ru/handle/10995/131009 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85178255121 |
Идентификатор WOS: | 001108166200001 |
Идентификатор PURE: | 49270477 |
ISSN: | 2504-3110 |
DOI: | 10.3390/fractalfract7110773 |
Сведения о поддержке: | King Saud University, KSU This project is funded by King Saud University, Riyadh, Saudi Arabia. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85178255121.pdf | 1,03 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons