Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131009
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAli, R.en
dc.contributor.authorHendy, A. S.en
dc.contributor.authorAli, M. R.en
dc.contributor.authorHassan, A. M.en
dc.contributor.authorAwwad, F. A.en
dc.contributor.authorIsmail, E. A. A.en
dc.date.accessioned2024-04-05T16:37:06Z-
dc.date.available2024-04-05T16:37:06Z-
dc.date.issued2023-
dc.identifier.citationAli, R, Hendy, AS, Ali, MR, Hassan, AM, Awwad, FA & Ismail, EAA 2023, 'Exploring Propagating Soliton Solutions for the Fractional Kudryashov–Sinelshchikov Equation in a Mixture of Liquid–Gas Bubbles under the Consideration of Heat Transfer and Viscosity', Fractal and Fractional, Том. 7, № 11, 773. https://doi.org/10.3390/fractalfract7110773harvard_pure
dc.identifier.citationAli, R., Hendy, A. S., Ali, M. R., Hassan, A. M., Awwad, F. A., & Ismail, E. A. A. (2023). Exploring Propagating Soliton Solutions for the Fractional Kudryashov–Sinelshchikov Equation in a Mixture of Liquid–Gas Bubbles under the Consideration of Heat Transfer and Viscosity. Fractal and Fractional, 7(11), [773]. https://doi.org/10.3390/fractalfract7110773apa_pure
dc.identifier.issn2504-3110-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85178255121&doi=10.3390%2ffractalfract7110773&partnerID=40&md5=293f41375571235aad58c8839c8564d01
dc.identifier.otherhttps://www.mdpi.com/2504-3110/7/11/773/pdf?version=1698198424pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131009-
dc.description.abstractIn this research work, we investigate the complex structure of soliton in the Fractional Kudryashov–Sinelshchikov Equation (FKSE) using conformable fractional derivatives. Our study involves the development of soliton solutions using the modified Extended Direct Algebraic Method (mEDAM). This approach involves a key variable transformation, which successfully transforms the model into a Nonlinear Ordinary Differential Equation (NODE). Following that, by using a series form solution, the NODE is turned into a system of algebraic equations, allowing us to construct soliton solutions methodically. The FKSE is the governing equation, allowing for heat transmission and viscosity effects while capturing the behaviour of pressure waves in liquid–gas bubble mixtures. The solutions we discover include generalised trigonometric, hyperbolic, and rational functions with kinks, singular kinks, multi-kinks, lumps, shocks, and periodic waves. We depict two-dimensional, three-dimensional, and contour graphs to aid comprehension. These newly created soliton solutions have far-reaching ramifications not just in mathematical physics, but also in a wide range of subjects such as optical fibre research, plasma physics, and a variety of applied sciences. © 2023 by the authors.en
dc.description.sponsorshipKing Saud University, KSUen
dc.description.sponsorshipThis project is funded by King Saud University, Riyadh, Saudi Arabia.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceFractal and Fractional2
dc.sourceFractal and Fractionalen
dc.subjectCONFORMABLE FRACTIONAL DERIVATIVESen
dc.subjectFRACTIONAL KUDRYASHOV–SINELSHCHIKOV EQUATIONen
dc.subjectNONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectSOLITONSen
dc.subjectVARIABLE TRANSFORMATIONen
dc.titleExploring Propagating Soliton Solutions for the Fractional Kudryashov–Sinelshchikov Equation in a Mixture of Liquid–Gas Bubbles under the Consideration of Heat Transfer and Viscosityen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/fractalfract7110773-
dc.identifier.scopus85178255121-
local.contributor.employeeAli, R., School of Mathematical Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Chinaen
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeAli, M.R., Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt, Basic Engineering Science Department, Benha Faculty of Engineering, Benha University, Benha, 13511, Egypten
local.contributor.employeeHassan, A.M., Faculty of Engineering, Future University in Egypt, New Cairo, 11835, Egypten
local.contributor.employeeAwwad, F.A., Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabiaen
local.contributor.employeeIsmail, E.A.A., Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabiaen
local.issue11-
local.volume7-
dc.identifier.wos001108166200001-
local.contributor.departmentSchool of Mathematical Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Chinaen
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentFaculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypten
local.contributor.departmentBasic Engineering Science Department, Benha Faculty of Engineering, Benha University, Benha, 13511, Egypten
local.contributor.departmentFaculty of Engineering, Future University in Egypt, New Cairo, 11835, Egypten
local.contributor.departmentDepartment of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabiaen
local.identifier.pure49270477-
local.description.order773-
local.identifier.eid2-s2.0-85178255121-
local.identifier.wosWOS:001108166200001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85178255121.pdf1,03 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons