Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130966
Title: Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay
Authors: Pimenov, V.
Lekomtsev, A.
Issue Date: 2023
Publisher: Multidisciplinary Digital Publishing Institute (MDPI)
Citation: Pimenov, V & Lekomtsev, A 2023, 'Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay', Mathematics, Том. 11, № 18, стр. 3941. https://doi.org/10.3390/math11183941
Pimenov, V., & Lekomtsev, A. (2023). Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay. Mathematics, 11(18), 3941. https://doi.org/10.3390/math11183941
Abstract: For a space-fractional diffusion equation with a nonlinear superdiffusion coefficient and with the presence of a delay effect, the grid numerical method is constructed. Interpolation and extrapolation procedures are used to account for the functional delay. At each time step, the algorithm reduces to solving a linear system with a main matrix that has diagonal dominance. The convergence of the method in the maximum norm is proved. The results of numerical experiments with constant and variable delays are presented. © 2023 by the authors.
Keywords: DELAY
NONLINEAR SUPERDIFFUSION COEFFICIENT
SPACE-FRACTIONAL DIFFUSION EQUATION
URI: http://elar.urfu.ru/handle/10995/130966
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85176607311
WOS ID: 001073981800001
PURE ID: 46919644
ISSN: 2227-7390
DOI: 10.3390/math11183941
Sponsorship: Russian Science Foundation, RSF: 22-21-00075
This research was funded by the Russian Science Foundation grant number 22-21-00075.
RSCF project card: 22-21-00075
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85176607311.pdf322,75 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons