Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/130966
Title: | Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay |
Authors: | Pimenov, V. Lekomtsev, A. |
Issue Date: | 2023 |
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) |
Citation: | Pimenov, V & Lekomtsev, A 2023, 'Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay', Mathematics, Том. 11, № 18, стр. 3941. https://doi.org/10.3390/math11183941 Pimenov, V., & Lekomtsev, A. (2023). Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay. Mathematics, 11(18), 3941. https://doi.org/10.3390/math11183941 |
Abstract: | For a space-fractional diffusion equation with a nonlinear superdiffusion coefficient and with the presence of a delay effect, the grid numerical method is constructed. Interpolation and extrapolation procedures are used to account for the functional delay. At each time step, the algorithm reduces to solving a linear system with a main matrix that has diagonal dominance. The convergence of the method in the maximum norm is proved. The results of numerical experiments with constant and variable delays are presented. © 2023 by the authors. |
Keywords: | DELAY NONLINEAR SUPERDIFFUSION COEFFICIENT SPACE-FRACTIONAL DIFFUSION EQUATION |
URI: | http://elar.urfu.ru/handle/10995/130966 |
Access: | info:eu-repo/semantics/openAccess cc-by |
License text: | https://creativecommons.org/licenses/by/4.0/ |
SCOPUS ID: | 85176607311 |
WOS ID: | 001073981800001 |
PURE ID: | 46919644 |
ISSN: | 2227-7390 |
DOI: | 10.3390/math11183941 |
Sponsorship: | Russian Science Foundation, RSF: 22-21-00075 This research was funded by the Russian Science Foundation grant number 22-21-00075. |
RSCF project card: | 22-21-00075 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85176607311.pdf | 322,75 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License