Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130937
Title: Antenna S-parameter optimization based on golden sine mechanism based honey badger algorithm with tent chaos
Authors: Adegboye, O. R.
Feda, A. K.
Ishaya, M. M.
Agyekum, E. B.
Kim, K. -C.
Mbasso, W. F.
Kamel, S.
Issue Date: 2023
Publisher: Elsevier Ltd
Citation: Adegboye, OR, Feda, AK, Ishaya, MM, Agyekum, E, Kim, K-C, Mbasso, WF & Kamel, S 2023, 'Antenna S-parameter optimization based on golden sine mechanism based honey badger algorithm with tent chaos', Heliyon, Том. 9, № 11, e21596. https://doi.org/10.1016/j.heliyon.2023.e21596
Adegboye, O. R., Feda, A. K., Ishaya, M. M., Agyekum, E., Kim, K-C., Mbasso, W. F., & Kamel, S. (2023). Antenna S-parameter optimization based on golden sine mechanism based honey badger algorithm with tent chaos. Heliyon, 9(11), [e21596]. https://doi.org/10.1016/j.heliyon.2023.e21596
Abstract: This work proposed a new method to optimize the antenna S-parameter using a Golden Sine mechanism-based Honey Badger Algorithm that employs Tent chaos (GST-HBA). The Honey Badger Algorithm (HBA) is a promising optimization method that similar to other metaheuristic algorithms, is prone to premature convergence and lacks diversity in the population. The Honey Badger Algorithm is inspired by the behavior of honey badgers who use their sense of smell and honeyguide birds to move toward the honeycomb. Our proposed approach aims to improve the performance of HBA and enhance the accuracy of the optimization process for antenna S-parameter optimization. The approach we propose in this study leverages the strengths of both tent chaos and the golden sine mechanism to achieve fast convergence, population diversity, and a good tradeoff between exploitation and exploration. We begin by testing our approach on 20 standard benchmark functions, and then we apply it to a test suite of 8 S-parameter functions. We perform tests comparing the outcomes to those of other optimization algorithms, the result shows that the suggested algorithm is superior. © 2023
URI: http://elar.urfu.ru/handle/10995/130937
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85176105452
WOS ID: 001112373600001
PURE ID: 48557712
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2023.e21596
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85176105452.pdf8,33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons