Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130912
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSidi, H. O.en
dc.contributor.authorZaky, M. A.en
dc.contributor.authorWaled, K. E.en
dc.contributor.authorAkgül, A.en
dc.contributor.authorHendy, A. S.en
dc.date.accessioned2024-04-05T16:35:20Z-
dc.date.available2024-04-05T16:35:20Z-
dc.date.issued2023-
dc.identifier.citationSidi, HO, Zaky, MA, Waled, KE, Akgül, A & Hendy, AS 2023, 'NUMERICAL RECONSTRUCTION OF A SPACE-DEPENDENT SOURCE TERM FOR MULTIDIMENSIONAL SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS', Romanian Reports in Physics, Том. 75, № 4, 120. https://doi.org/10.59277/RomRepPhys.2023.75.120harvard_pure
dc.identifier.citationSidi, H. O., Zaky, M. A., Waled, K. E., Akgül, A., & Hendy, A. S. (2023). NUMERICAL RECONSTRUCTION OF A SPACE-DEPENDENT SOURCE TERM FOR MULTIDIMENSIONAL SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS. Romanian Reports in Physics, 75(4), [120]. https://doi.org/10.59277/RomRepPhys.2023.75.120apa_pure
dc.identifier.issn1221-1451-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85175531372&doi=10.59277%2fRomRepPhys.2023.75.120&partnerID=40&md5=cbe228e7bfc8840beb7bc9fb3d2634161
dc.identifier.otherhttps://doi.org/10.59277/romrepphys.2023.75.120pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130912-
dc.description.abstractIn this paper, we consider the problem of identifying the unknown source function in the time-space fractional diffusion equation from the final observation data. An implicit difference technique is proposed in conjunction with the matrix transfer scheme for approximating the solution of the direct problem. The challenge pertains to an inverse scenario encompassing a nonlocal ill-posed operator. The problem under investigation is formulated as a regularized optimization problem with a least-squares cost function minimization objective. An approximation for the source function is obtained using an iterative non-stationary Tikhonov regularization approach. Three numerical examples are reported to verify the efficiency of the proposed schemes. © 2023, Publishing House of the Romanian Academy. All rights reserved.en
dc.description.sponsorshipDeanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University: IMSIU-RP23095en
dc.description.sponsorshipAcknowledgements. This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23095).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherPublishing House of the Romanian Academyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceRomanian Reports in Physics2
dc.sourceRomanian Reports in Physicsen
dc.subjectFRACTIONAL LAPLACIANen
dc.subjectINVERSE PROBLEMen
dc.subjectITERATIVE NON-STATIONARY TIKHONOV REGULARIZATIONen
dc.subjectTIME-SPACE FRACTIONAL EQUATIONen
dc.titleNUMERICAL RECONSTRUCTION OF A SPACE-DEPENDENT SOURCE TERM FOR MULTIDIMENSIONAL SPACE-TIME FRACTIONAL DIFFUSION EQUATIONSen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.59277/RomRepPhys.2023.75.120-
dc.identifier.scopus85175531372-
local.contributor.employeeSidi, H.O., Department of Mathematics, Faculty of Sciences, University of Nouakchott Al Aasriya, Nouakchott, Mauritaniaen
local.contributor.employeeZaky, M.A., Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabiaen
local.contributor.employeeWaled, K.E., Department of Mathematics, Faculty of Sciences, University of Nouakchott Al Aasriya, Nouakchott, Mauritaniaen
local.contributor.employeeAkgül, A., Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon, Department of Mathematics, Art and Science Faculty, Siirt University, Siirt, 56100, Turkeyen
local.contributor.employeeHendy, A.S., Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federationen
local.issue4-
local.volume75-
dc.identifier.wos001110490400009-
local.contributor.departmentDepartment of Mathematics, Faculty of Sciences, University of Nouakchott Al Aasriya, Nouakchott, Mauritaniaen
local.contributor.departmentDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabiaen
local.contributor.departmentDepartment of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanonen
local.contributor.departmentDepartment of Mathematics, Art and Science Faculty, Siirt University, Siirt, 56100, Turkeyen
local.contributor.departmentComputational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federationen
local.identifier.pure47718088-
local.description.order120-
local.identifier.eid2-s2.0-85175531372-
local.identifier.wosWOS:001110490400009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85175531372.pdf393,58 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.