
Romanian Reports in Physics75, 120 (2023)

NUMERICAL RECONSTRUCTION OF A SPACE-DEPENDENT SOURCE
TERM FOR MULTIDIMENSIONAL SPACE-TIME FRACTIONAL DIFFUSION

EQUATIONS

H. OULD SIDI1, M. A. ZAKY 2,*, K. EL WALED1, A. AKGÜL3,4, A. S. HENDY5
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Abstract. In this paper, we consider the problem of identifying the unknown
source function in the time-space fractional diffusion equation from the final obser-
vation data. An implicit difference technique is proposed in conjunction with the
matrix transfer scheme for approximating the solution of the direct problem. The
challenge pertains to an inverse scenario encompassing a nonlocal ill-posed operator.
The problem under investigation is formulated as a regularized optimization problem
with a least-squares cost function minimization objective. An approximation for the
source function is obtained using an iterative non-stationary Tikhonov regularization
approach. Three numerical examples are reported to verify the efficiency of the pro-
posed schemes.
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1. INTRODUCTION

In this paper, we consider the problem of identifying the unknown source func-
tion f(x) in the following time-space fractional diffusion equation from the terminal
observation datay(x,T ) =O(x):







∂αt y+(−∆)
s
2 y = f g in Θ× (0,T ],
y = 0 in R

d \Θ× (0,T ],
y(·,0) = y0 in Θ,

(1)

where

• The bounded open setΘ ⊂ R
d(d = 1,2,3) and the source termf ∈ L2(Θ),
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g ∈ L∞(0,T ), the initial valuey0 ∈ L2(Θ), and the terminal timeT > 0.

• The time-Caputo fractional derivative∂αt y of orderα ∈ (0,1) is defined as:

∂αt y =
1

Γ(1−α)

∫ t

0
(t−w)−αy′(w)dw, (2)

whereΓ(z) =
∫

∞

0
sz−1 exp(−s)ds is theΓ function.

• The fractional operator(−∆)
s
2 is defined in the normal way, which can be rep-

resented by Laplace operator in terms of spectral decomposition fors ∈ (1,2).

Let {ψk,λk} be the corresponding eigenvectors and eigenvalues of the Laplacian
operator−∆:

{

−∆ψk = λkψk in Θ,
ψk = 0 in ∂Θ.

Consider

Gθ =
{

f =
∑

∞

i=1 biψi, bn = (f,ψi)
∣

∣

∣

∑

∞

i=1

∣

∣

∣
bn

∣

∣

∣

2
|λi|θ<∞, θ =max(0, s)

}

.

Hence, we can write

(−∆)
s
2 =

∞
∑

i=1

biλ
s
2

i ψi.

The eigenvaluesλi and eigenfunctionsψi depend on the boundaries and the ge-
ometry of the domainΘ. For example, in a rectangular domain, the eigenvalues and
eigenfunctions can be found analytically using the separation of variables. In more
complex geometries, numerical methods such as finite element analysis or spectral
methods may be used to compute the eigenfunctions and the eigenvalues. The spec-
tral decomposition of the Laplacian operator is a fundamental concept in thestudy of
partial differential equations and plays an essential function in severaldisciplines of
physics, engineering, and applied mathematics. It provides a powerful tool for solv-
ing boundary and eigenvalue problems and understanding the behavior of solutions
to differential equations in different domains.

Fractional calculus and fractional differential equations have become vital tools
for modeling a wide range of phenomena in many fields, see for example [1–7]. It is
critical to find approximate and analytical solutions to these equations [8–11].More-
over, the inverse problem for fractional differential equations has significant applica-
tions in many fields of applied sciences. In recent decades, numerous analytical and
numerical techniques for solving various types of partial differential problems have
been published [12–16]. The ability to identify unknown source terms frommeasure-
ments or observations is crucial for understanding and modeling complex processes
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with memory effects and long-range interactions. Recently, several aspects of the
inverse source problem have been investigated on a large scale. For example, Tatar
et al. [17] studied space-dependent source determination on a space-time fractional
inverse problem. Tuan and Long [18] discussed the use of the Fourier truncation
technique for a time-space fractional inverse source problem for diffusion equation.
However, to the best of our knowledge, there is no numerical study for this model. In
[19] Dou and Hon developed a numerical strategy based on a kernel-based approxi-
mation technique for addressing a backward time-space fractional diffusion equation.
Wei et al. [20] investigated the identification of a time-dependent source component
using initial and boundary data as well as extra measurement data at an inner location
in a space-time fractional diffusion problem.

In this work, we provide a finite difference approach in conjugation with the
matrix transfer methodology for approximating the solution of the space-time frac-
tional-order direct diffusion equation in one- and two-dimensional cases. Then, the
Tikhonov regularization approach is used to solve the inverse source equation.

The paper is organized as follows: In Sec. 1, the problem formulation is pro-
vided, giving an overview of the research topic. In Sec. 2, a finite difference approach
is provided in conjugation with the matrix transfer methodology for approximating
the solution of the space-time fractional-order direct diffusion equation in one- and
two-dimensions. In Sec. 3 the identification approach is constructed basedon an it-
erative non-stationary Tikhonov regularization technique for the inverse source equa-
tion with a detailed description of the approach. In Sec. 4, the numerical results are
reported showing the practical implications of the scheme. Finally, Sec. 5 draws
conclusions summarizing the key findings.

2. NUMERICAL SCHEME OF THE DIRECT PROBLEM

In this Section, we construct the difference scheme for problem (1). Let xi =
ih(i = 0.1, · · · ,N), whereh = 1/N is a step over space, and likewisetj = jδt(j =
0,1, · · · ,M), with δt= T/M is the grid step over time.

We begin with the following standard equation [21, 22]:







∂ty−∂xxy = f(x) g(t) in Θ× (0,T ],
y = 0 in R

d \Θ× (0,T ],
y(·,0) = z in Θ.

(3)

Using the finite difference discretization, we get

dyi
dt

+
1

h2
(−yi−1+2yi−yi+1) = g(t)fi,

y0 = yN = 0,
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yi = zi.

We can express equation (3) as a differential equation in the following form:

dY

dt
+ ζAY = g(t)F,

with ζ = 1
h2 , Y =(y1,y2, · · · ,yN−1)

T , F =(f1,f2, · · · ,fN−1)
T , Y 0=(z1, z2, · · · , zN−1)

T ,

A=















2 −1
−1 2 1

−1 2 1
. .. . ..

−1 2















(N−1)×(N−1)

.

Hence
A= PΨP−1,

whereP denotes the orthogonal matrix and the eigenvaluesΨ= diag(λ1,λ2, · · · ,λN−1)
are for the matrixA. Thus, the problem (3) can be represented as:

∂αt Y + ζ̄A
s
2Y = g(t)f,

whereζ̄ = 1
hα , A

s
2 = PΨ

s
2P−1. Hence, the discretization of the fractional derivative

in time is given by:

∂αt y(x,tj) =
δt−α

Γ(2−α)
(

b
(α)
0 y(x,tj)−

j−1
∑

k=1

(

b
(α)
j−k−1−b

(α)
j−k

)

y(x,tk)−b(α)j−1y(x,t0)
)

,

(4)
whereb(α)l = (1+ l)1−α− l1−α, l ≥ 0. Letwk = b

(α)
j−k−1− b

(α)
j−k, then we have



























∂αt y
j
1 = δt−α

Γ(2−α)

(

b
(α)
0 yj1−

∑j−1
k=1w

(α)
k yk1 − b

(α)
j−1y

0
1

)

∂αt y
j
2 = δt−α

Γ(2−α)

(

b
(α)
0 yj2−

∑j−1
k=1w

(α)
k yk2 − b

(α)
j−1y

0
2

)

· · · · · ·
∂αt y

j
N−1 = δt−α

Γ(2−α)

(

b
(α)
0 yjN−1−

∑j−1
k=1w

(α)
k ykN−1− b

(α)
j−1y

0
N−1

)

.

(5)

Hence, we can write
BY j = a,

with Y j = (yj1,y
j
2, · · · ,y

j
N−1),B = b

(α)
0

δt−β

Γ(2−β)I(N−1)×(N−1)+ ζ̄A
s
2 and

a=
δt−β

Γ(2−β)











y11 y21 · · · yj−1
1

y12 y22 · · · yj−1
2

· · · · · · · · · · · ·
y1N−1 y2N−1 · · · yj−1

N−1





















w
(α)
1

w
(α)
2

· · ·
w

(α)
N−1











+b
(α)
j−1

δt−α

Γ(2−α)









z1
z2
· · ·
zN−1









+Fg(tj).
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3. IDENTIFICATION APPROACH

In this part, we propose a non-stationary iterative Tikhonov regularization tech-
nique to identify the source functionf(x) using further data. Letf0 be the initial state
andfk be the iterative value of thek-th step, hence

fk+1 =
1

2
argminJη =

∣

∣

∣

∣

∣

∣y(x,T )−O(x)
∣

∣

∣

∣

∣

∣

L2(Θ)
+
ηk+1

2

∣

∣

∣

∣

∣

∣f −fk
∣

∣

∣

∣

∣

∣

L2(Θ)
. (6)

Let

Φ= span{ψ1,ψ2, · · · ,ψs}.
Then we can write

f(x) =
s

∑

k=1

fk(x)ψk(x).

This is to identify an approximation

f̂(x) ∈ Φs,

with a vector

f = (f1,f2, · · · ,fs) ∈ R
S .

Now, we propose an algorithm to identify the source function which depends
on the spaceΘ. For any givenfk ∈ R

S . Pose

fk+1 = fk+ δfk,

with δfk is a small perturbation offk. Hence, it suffices to obtain an optimal pertur-
bationδfk to getfk+1 from the givenfk. By the linearity ofy[f + δf ](x,T ) at f ,
we can get

y[f + δf ](x,T ) = y[f ](x,T )+ δfFT
f , (7)

with Ff = y[e1](x,T ), · · · ,y[es](x,T ), andei = (0,0, · · · ,1, · · · ,0) for i = 0, · · · , s.
Thus using (7) we can write (6) in the following form, Find

min
f∈Rs

(∣

∣

∣

∣

∣

∣
y(x,T )−O(x)+ δfFT

f

∣

∣

∣

∣

∣

∣

2

L2(Θ)
+
ηk+1

2

∣

∣

∣

∣

∣

∣
δfCδfT

∣

∣

∣

∣

∣

∣

2

L2(Θ)
, (8)

whereC(ψi,ψj)s×s. Minimizing (6) implies solving the following problem

(ηk+1C+D)δfT =H, (9)

wherD = (Fi,Fj)s×s andH = (O(x)− y[f ](x,T ),Fj)s×1. So the iteration steps
are then

fk+1 = fk+ δfk, (10)

until arriving at a stopping principle.
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4. RESULTS

In this Section, we provide three numerical examples in multidimensions as an
application of the proposed scheme. In our implementation procedure, the domain
Θ is considered as(0,1) for the one-dimensional case and(0,1)× (0,1) for two-
dimensional, and the final timeT = 1. We take the temporal grid size and the spacial
grid with δt= 1

100 andh= 1
100 , respectively.

The noise is created by introducing the following random perturbation:

Oǫ =O+ ǫO.(2.rand(size(O)−1),

where the equivalent level of noise is computed byǫ= ‖Oǫ−O‖L2(Θ). The follow-
ing error function will be used to demonstrate the accuracy of the proposed scheme

em = ‖f −fm‖L2(Θ),

wherefm is the reconstructed source function atm-th iteration andf is the exact
solution.

4.1. THE ONE-DIMENSIONAL CASE

Example 1. For this case, we take the basis function space
ΦS = span{1,

√
2cos(πx), · · · ,

√
2cos((s−1)πx)}. In the first example, our objec-

tive is to identify the following example,

f(x) = x4+xsin(πx).

Figure 1 depicts the reconstruction findings.
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Figure 1 – Reconstruction outcomes for Example 1 with (a)α= 0.4, s= 1.2 and (b)α= 0.7, s= 1.7.

Example 2. Now we apply our algorithm to identify the nonsmooth following func-
tion

f(x) =















1, 0≤ x≤ 0.1,
1+2.5(x−0.1), 0.1≤ x≤ 0.5,
2+2.5(0.5−x), 0.5≤ x≤ 0.9,

1, 0.9≤ x≤ 1.
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The numerical outcomes of the function, with various noise levels are depicted
in Fig. 2.
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Figure 2 – Reconstruction results for Example 2 with (a)α= 0.4, s= 1.2 and (b)α= 0.7, s= 1.7.

4.2. THE TWO-DIMENSIONAL CASE

For this case we choosex= (x1,x2) δt= 1/100, δx1 = 1/100, δx2 = 1/100,
andΦs1×s2 = {ψi(x1)ψj(x2)} with

ψi(x1) =

{

1 if i= 1,√
2cos((i−1)πx), i > 1,

and

ψi(x2) =

{

1 if j = 1,√
2cos((j−1)πx), j > 1,

i= 1,2, · · · ,S1, j = 1,2, · · · ,S2.

Figure 3 – Reconstruction outcomes, for Example 3 (a) the true solution and (b) the approximate solu-
tion.

Example 3. We consider the following function

f(x1,x2) = cos(πx1)cos(πx2). (11)
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Figure 4 – The absolute true errors for Example 3.

Figures 3 and 4 display the reconstructed source functions, the true source function,
and related absolute true errors forα = 0.5 ands = 1.2 when the level of the noise
is epsilon= 0.01.

The exact source solutions, reconstructed source terms, and the absolute errors
between the exact source functions and the numerical solutions forα= 0.5 ands=
1.2 are shown in Figs. 3 and 4 by taking withe noise levelǫ= 0.01.

5. CONCLUSION

The problem of identifying the unknown source function in the time-space frac-
tional diffusion equation from the final observation data has been considered. An
iterative non-stationary Tikhonov regularization scheme coupled with a Tikhonov
regularization is used.

The proposed method is evaluated in the simulation phase by numerically re-
constructing three separate examples in the one- and two-dimensional cases. These
simulations demonstrate the accuracy and efficiency of the proposed method.
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