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Abstract. In this paper, we consider the problem of identifying the unknown
source function in the time-space fractional diffusion equation from the final obser-
vation data. An implicit difference technique is proposed in conjunction with the
matrix transfer scheme for approximating the solution of the direct problem. The
challenge pertains to an inverse scenario encompassing a nonlocal ill-posed operator.
The problem under investigation is formulated as a regularized optimization problem
with a least-squares cost function minimization objective. An approximation for the
source function is obtained using an iterative non-stationary Tikhonov regularization
approach. Three numerical examples are reported to verify the efficiency of the pro-
posed schemes.
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1. INTRODUCTION

In this paper, we consider the problem of identifying the unknown source func-
tion f(x) in the following time-space fractional diffusion equation from the terminal
observation datg(z,7') = O(x):

Py+(-A)zy = fg in ©x(0,T],
= 0 in R¥N\Ox(0,T], (1)
Yo in O,

S
\

y('a
where
e The bounded open s@ c R%(d = 1,2,3) and the source ternf ¢ L?(0),
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g € L*(0,T), the initial valueyy € L*(0©), and the terminal tim& > 0.

e The time-Caputo fractional derivativé'y of ordera € (0,1) is defined as:
(6% 1 K —a, !
aty_l“(l—a)/o(t_w) y (w)dw, (2)
wherel'(z) = / s*Lexp(—s)ds is theT function.
0

e The fractional operatof—A)? is defined in the normal way, which can be rep-
resented by Laplace operator in terms of spectral decompositian=t , 2).

Let {4, A} be the corresponding eigenvectors and eigenvalues of the Laplacian
operator—A:

A =N in O,
b =0in 0.

Consider

Go = {f = > bithi, by = (f, 1)

Hence, we can write

2
S ba| IN|P< oo,&zmax((),s)}.

(~A)F =3 birius.
=1

The eigenvalues; and eigenfunctiong; depend on the boundaries and the ge-
ometry of the domai®. For example, in a rectangular domain, the eigenvalues and
eigenfunctions can be found analytically using the separation of varialolesore
complex geometries, numerical methods such as finite element analysis tralspec
methods may be used to compute the eigenfunctions and the eigenvaluepedhe s
tral decomposition of the Laplacian operator is a fundamental concept stuttig of
partial differential equations and plays an essential function in sesfs@plines of
physics, engineering, and applied mathematics. It provides a powenfubtosolv-
ing boundary and eigenvalue problems and understanding the behasmutions
to differential equations in different domains.

Fractional calculus and fractional differential equations have becdai¢aols
for modeling a wide range of phenomena in many fields, see for examplg [iLis7
critical to find approximate and analytical solutions to these equations [8Mblg-
over, the inverse problem for fractional differential equations hasfgignt applica-
tions in many fields of applied sciences. In recent decades, numeralysical and
numerical techniques for solving various types of partial differentiabfgms have
been published [12—-16]. The ability to identify unknown source terms fr@asure-
ments or observations is crucial for understanding and modeling compleggses
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with memory effects and long-range interactions. Recently, severattaspiethe
inverse source problem have been investigated on a large scale. droplex Tatar
et al. [17] studied space-dependent source determination on a space-tatientah
inverse problem. Tuan and Long [18] discussed the use of the Fourieration
technique for a time-space fractional inverse source problem forsgiffiuequation.
However, to the best of our knowledge, there is no numerical studyifontbdel. In
[19] Dou and Hon developed a numerical strategy based on a kersedta@proxi-
mation technique for addressing a backward time-space fractionalidiffaguation.
Wei et al. [20] investigated the identification of a time-dependent source component
using initial and boundary data as well as extra measurement data at alocatmn
in a space-time fractional diffusion problem.

In this work, we provide a finite difference approach in conjugation with the
matrix transfer methodology for approximating the solution of the space-time fra
tional-order direct diffusion equation in one- and two-dimensional cablsn, the
Tikhonov regularization approach is used to solve the inverse sounetiea,

The paper is organized as follows: In Sec. 1, the problem formulatiorois pr
vided, giving an overview of the research topic. In Sec. 2, a finiterdiffee approach
is provided in conjugation with the matrix transfer methodology for approximating
the solution of the space-time fractional-order direct diffusion equatiomé& and
two-dimensions. In Sec. 3 the identification approach is constructed basad it-
erative non-stationary Tikhonov regularization technique for the ieversirce equa-
tion with a detailed description of the approach. In Sec. 4, the numericdtsese
reported showing the practical implications of the scheme. Finally, Sec. viisdra
conclusions summarizing the key findings.

2.NUMERICAL SCHEME OF THE DIRECT PROBLEM

In this Section, we construct the difference scheme for problem (I)zLe
ih(i=0.1,---,N), whereh = 1/N is a step over space, and likewise= jit(j =
0,1,---,M), with 6t = T'/M is the grid step over time.

We begin with the following standard equation [21, 22]:

Oy — Ozy = f(x)g(t) in @X(O,T],

y = 0 in R\ © x (0,77, (3)
y(-,0) = =z in ©.
Using the finite difference discretization, we get
T ﬁ( —Yi—1+2yi —yiy1) = 9(t) fi,

Z/OZZ/N:Oa



Article no. 120 H. Ould Sidet al. 4

Yi = Z4-
We can express equation (3) as a differential equation in the followimg;: for
dY
— AY =g(1) F,
o ¢ g(t)
W|th€ % (y17y27”'7yN71) 7F:(fl?f?u'”afol)T7Y0:(217Z27"'7ZN*1)T7
2 -1
-1 2 1
A= -1 2 1
-1 2 (N—1)x(N—1)
Hence
A=PUp,

whereP denotes the orthogonal matrix and the eigenvaluesdiag(Ai, A2, -+, An—1)
are for the matrix4. Thus, the problem (3) can be represented as:

Y +CAY =g(t) f,

where( = h%, A3 = PUs pL, Hence, the discretization of the fractional derivative
in time is given by:

i—1
o 0t (@) (@) @ (@)
Oy(z,t;) = m (bo y(z,t5) _k:1 (bj—k—l _bj—k:>y($’tk) _bj—1y($at0))’
4)
whereb(®) = (1+1)1=o 1= 1 >0, Letwk_bga)k L b§ *) . then we have
o5yl :r((séix 0 ?/1 Z] 1wk ?Jl b(oi)1y(1)
05y - F((sé_a Z] 1wka Y5 — b§ci)1y(2) 5
(5)
OFyn_y = r((;t a)(b(a)yzv 1 Zk lwka Yn- 1_b( )1?/N 1)
Hence, we can write
BY7 =a,
with Y9 = (4,5, yh 1), B = b 25 v —1)w(v—1) + (A% and
AN 2
ot~ vi ¥ w wy” () 07" | 2
— F
“TTe-p) | o U = T2 —a) +Fg(t;)

1 2 J—1 a
YnN-1 Yn-1 T YUn-a wEVll ZN-1
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3. IDENTIFICATION APPROACH

In this part, we propose a non-stationary iterative Tikhonov regulariz &eich-
nique to identify the source functigf{z) using further data. Let’ be the initial state
and f* be the iterative value of thie-th step, hence

Jan— %argminj,7 = Hy(m,T) - (’)(x)’ (6)

Nk+1
+ 2|1

L2(©) L2(e)

Let
P = span{%’%bza' o 7'¢S}'

Then we can write
Fla) =" fFHa)n(x).
k=1

This is to identify an approximation

A~

f(.’L') e q)Sv
with a vector
f: (f17f27"'7f8) GRS'
Now, we propose an algorithm to identify the source function which depend
on the spac®. For any givenf* € RS. Pose

fk+1 _ fk+6fk
with ¢ £* is a small perturbation of*. Hence, it suffices to obtain an optimal pertur-
bationd f* to get f**! from the givenf*. By the linearity ofy[f + & f](x,T) at f,
we can get
ylf +0f)(x,T) = ylf)(@,T)+ 6 fFF, (7)
with 7y = yle1|(z,T),---,yles|(x,T), ande; = (0,0,---,1,---,0) for i =0,---,s.
Thus using (7) we can write (6) in the following form, Find

2 2
: _ T Mk—+1 T
i ([[ote ) - 0@ 431 7|, o + 25 a5C0S |y ®
whereC'(1;,1;)sxs. Minimizing (6) implies solving the following problem
(M 1C+D)5fT = H, (9)

wher D = (F;, Fj)sxs and H = (O(z) —y[f](x,T),F;)sx1. So the iteration steps
are then

= frart (10)
until arriving at a stopping principle.
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4. RESULTS

In this Section, we provide three numerical examples in multidimensions as an
application of the proposed scheme. In our implementation procedure, tigro
© is considered a0, 1) for the one-dimensional case af@ 1) x (0,1) for two-
dimensional, and the final tini€ = 1. We take the temporal grid size and the spacial
grid with §¢ = <15 andh = %, respectively.
The noise is created by introducing the following random perturbation:

O =0+ €0.(2.rand(size(O) — 1),
where the equivalent level of noise is computed:by || O° — O||;2(e). The follow-
ing error function will be used to demonstrate the accuracy of the prdsuseeme
em = ||f = fmllL2(0)

where f,,, is the reconstructed source functionratth iteration andf is the exact
solution.

4.1. THE ONE-DIMENSIONAL CASE

Example 1. For this case, we take the basis function space
g = span{l,v/2cos(rx), --,v/2cos((s — 1)mx)}. In the first example, our objec-
tive is to identify the following example,

f(z) = 2* 4 zsin(rx).
Figure 1 depicts the reconstruction findings.

0 of
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 1 — Reconstruction outcomes for Example 1 witha(&) 0.4,s = 1.2 and (b)a = 0.7,s = 1.7.

Example 2. Now we apply our algorithm to identify the nonsmooth following func-
tion
1, 0<z<0.1,
@)= 14+2.5(x—0.1), 0.1 <z<0.5,
24+25(0.5—x), 0.5<x<0.9,
1, 09<z<1.
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The numerical outcomes of the function, with various noise levels aretdépic
in Fig. 2.

Exact solution
—e—i-0

18 —— 5-0.001
——5=0.01

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 2 — Reconstruction results for Example 2 withd¢ay 0.4,s = 1.2 and (b)a =0.7,s = 1.7.

4.2. THE TWO-DIMENSIONAL CASE
For this case we choose= (x1,z3) 6t =1/100, dz1 = 1/100, dx2 = 1/100,
and®7%2 = {¢;(z1)1;(z2)} with
1 if i=1,
vile) = {\/icos((i— D)mx), i>1,

and
1 if  j=1,

R
i1=1,2,---.51,j=1,2,---,55.

Figure 3 — Reconstruction outcomes, for Example 3 (a) the true solutib(bathe approximate solu-
tion.

Example 3. We consider the following function

f(z1,22) = cos(mxy) cos(mzs). (11)
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Figure 4 — The absolute true errors for Example 3.

Figures 3 and 4 display the reconstructed source functions, the truesumction,
and related absolute true errors far = 0.5 and s = 1.2 when the level of the noise
is epsilon = 0.01.

The exact source solutions, reconstructed source terms, and thrisbsrrors
between the exact source functions and the numerical solutiorms%0p.5 and s =
1.2 are shown in Figs. 3 and 4 by taking withe noise leve! 0.01.

5. CONCLUSION

The problem of identifying the unknown source function in the time-spaae fr
tional diffusion equation from the final observation data has been camnesid An
iterative non-stationary Tikhonov regularization scheme coupled with aomibh
regularization is used.

The proposed method is evaluated in the simulation phase by numerically re-
constructing three separate examples in the one- and two-dimensioral Tasse
simulations demonstrate the accuracy and efficiency of the proposed method
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