Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130883
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLiaqat, M. I.en
dc.contributor.authorAkgül, A.en
dc.contributor.authorProsviryakov, E. Y.en
dc.date.accessioned2024-04-05T16:34:56Z-
dc.date.available2024-04-05T16:34:56Z-
dc.date.issued2023-
dc.identifier.citationLiaqat, MI, Akgül, A & Prosviryakov, EY 2023, 'An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients', Вестник Самарского государственного технического университета. Серия: Физико-математические науки, Том. 27, № 2, стр. 214-240. https://doi.org/10.14498/vsgtu2009harvard_pure
dc.identifier.citationLiaqat, M. I., Akgül, A., & Prosviryakov, E. Y. (2023). An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients. Вестник Самарского государственного технического университета. Серия: Физико-математические науки, 27(2), 214-240. https://doi.org/10.14498/vsgtu2009apa_pure
dc.identifier.issn1991-8615-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85174953852&doi=10.14498%2fvsgtu2009&partnerID=40&md5=331732e5a69e634bc215e8c10ca6db551
dc.identifier.otherhttps://www.mathnet.ru/php/getFT.phtml?jrnid=vsgtu&paperid=2009&what=fullt&option_lang=ruspdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130883-
dc.description.abstractThe residual power series method is effective for obtaining approximate analytical solutions to fractional-order differential equations. This method, however, requires the derivative to compute the coefficients of terms in a series solution. Other well-known methods, such as the homotopy perturbation, the Adomian decomposition, and the variational iteration methods, need integration. We are all aware of how difficult it is to calculate the fractional derivative and integration of a function. As a result, the use of the methods mentioned above is somewhat constrained. In this research work, approximate and exact analytical solutions to time-fractional partial differential equations with variable coefficients are obtained using the Laplace residual power series method in the sense of the Gerasimov-Caputo fractional derivative. This method helped us overcome the limitations of the various methods. The Laplace residual power series method performs exceptionally well in computing the coefficients of terms in a series solution by applying the straightforward limit principle at infinity, and it is also more effective than various series solution methods due to the avoidance of Adomian and He polynomials to solve nonlinear problems. The relative, recurrence, and absolute errors of the three problems are investigated in order to evaluate the validity of our method. The results show that the proposed method can be a suitable alternative to the various series solution methods when solving time-fractional partial differential equations. © 2023 Samara State Technical University. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSamara State Technical Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceJournal of Samara State Technical University, Ser. Physical and Mathematical Sciences2
dc.sourceVestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Naukien
dc.subjectGERASIMOV-CAPUTO DERIVATIVEen
dc.subjectLAPLACE TRANSFORMen
dc.subjectPARTIAL DIFFERENTIAL EQUATIONen
dc.subjectRESIDUAL POWER SERIES METHODen
dc.titleAn efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficientsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.rsi54912902-
dc.identifier.doi10.14498/vsgtu2009-
dc.identifier.scopus85174953852-
local.contributor.employeeLiaqat, M.I., Government College University, Lahore, 54600, Pakistan, National College of Business Administration & Economics, Lahore, 54660, Pakistanen
local.contributor.employeeAkgül, A., Lebanese American University, Beirut, 1102 2801, Lebanon, Siirt University, Siirt, 56100, Turkey, Near East University, Nicosia, 99138, Turkeyen
local.contributor.employeeProsviryakov, E.Y., Ural Federal University, Ekaterinburg, 620137, Russian Federation, Institute of Engineering Science, RAS (Ural Branch), Ekaterinburg, 620049, Russian Federation, Urals State University of Railway Transport, Ekaterinburg, 620034, Russian Federation, Udmurt Federal Research Center, RAS (Ural Branch), Izhevsk, 426067, Russian Federationen
local.description.firstpage214-
local.description.lastpage240-
local.issue2-
local.volume27-
dc.identifier.wos001100245300002-
local.contributor.departmentGovernment College University, Lahore, 54600, Pakistanen
local.contributor.departmentNational College of Business Administration & Economics, Lahore, 54660, Pakistanen
local.contributor.departmentLebanese American University, Beirut, 1102 2801, Lebanonen
local.contributor.departmentSiirt University, Siirt, 56100, Turkeyen
local.contributor.departmentNear East University, Nicosia, 99138, Turkeyen
local.contributor.departmentUral Federal University, Ekaterinburg, 620137, Russian Federationen
local.contributor.departmentInstitute of Engineering Science, RAS (Ural Branch), Ekaterinburg, 620049, Russian Federationen
local.contributor.departmentUrals State University of Railway Transport, Ekaterinburg, 620034, Russian Federationen
local.contributor.departmentUdmurt Federal Research Center, RAS (Ural Branch), Izhevsk, 426067, Russian Federationen
local.identifier.pure47595658-
local.identifier.eid2-s2.0-85174953852-
local.identifier.wosWOS:001100245300002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85174953852.pdf1,84 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons