Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130876
Title: Exploring the new soliton solutions to the nonlinear M-fractional evolution equations in shallow water by three analytical techniques
Authors: Zafar, A.
Raheel, M.
Mahnashi, A. M.
Bekir, A.
Ali, M. R.
Hendy, A. S.
Issue Date: 2023
Publisher: Elsevier B.V.
Citation: Zafar, A, Raheel, M, Mahnashi, AM, Bekir, A, Ali, MR & Hendy, AS 2023, 'Exploring the new soliton solutions to the nonlinear M-fractional evolution equations in shallow water by three analytical techniques', Results in Physics, Том. 54, 107092. https://doi.org/10.1016/j.rinp.2023.107092
Zafar, A., Raheel, M., Mahnashi, A. M., Bekir, A., Ali, M. R., & Hendy, A. S. (2023). Exploring the new soliton solutions to the nonlinear M-fractional evolution equations in shallow water by three analytical techniques. Results in Physics, 54, [107092]. https://doi.org/10.1016/j.rinp.2023.107092
Abstract: This paper explores the new soliton solutions of the evolution equations named as truncated M-fractional (1+1)-dimensional non-linear Kaup-Boussinesq system by utilizing the expa function, modified simplest equation and Sardar sub-equation techniques. This system is used in the analysis of long waves in shallow water. The attained results involving trigonometric, hyperbolic and exponential functions. The effect of fractional order derivative is also discussed. Obtained results are very close to the approximate results due to the use of M-fractional derivative. Achieved results are verified by Mathematica tool. Few of the gained results are also explained through 2-D, 3-D and contour graphs. At the end, these techniques are straight forward, useful and effective to deal with non-linear FPDEs. © 2023 The Author(s)
Keywords: MODIFIED SIMPLEST EQUATION TECHNIQUE
NEW SOLITON SOLUTIONS
SARDAR SUB-EQUATION TECHNIQUE
SPACE–TIME FRACTIONAL KAUP–BOUSSINESQ SYSTEM
THE EXPA FUNCTION TECHNIQUE
URI: http://elar.urfu.ru/handle/10995/130876
Access: info:eu-repo/semantics/openAccess
cc-by-nc-nd
License text: https://creativecommons.org/licenses/by-nc-nd/4.0/
SCOPUS ID: 85174809475
WOS ID: 001102654800001
PURE ID: 47720308
ISSN: 2211-3797
DOI: 10.1016/j.rinp.2023.107092
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85174809475.pdf2,78 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons