Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130871
Название: Machine learning approaches for real-time forecasting of solar still distillate output
Авторы: Murugan, D. K.
Said, Z.
Panchal, H.
Gupta, N. K.
Subramani, S.
Kumar, A.
Sadasivuni, K. K.
Дата публикации: 2023
Издатель: Elsevier B.V.
Библиографическое описание: Murugan, DK, Said, Z, Panchal, H, Gupta, N, Subramani, S, Kumar, A & Sadasivuni, K 2023, 'Machine learning approaches for real-time forecasting of solar still distillate output', Environmental Challenges, Том. 13, 100779. https://doi.org/10.1016/j.envc.2023.100779
Murugan, D. K., Said, Z., Panchal, H., Gupta, N., Subramani, S., Kumar, A., & Sadasivuni, K. (2023). Machine learning approaches for real-time forecasting of solar still distillate output. Environmental Challenges, 13, [100779]. https://doi.org/10.1016/j.envc.2023.100779
Аннотация: Solar stills provide a promising avenue for freshwater production in regions grappling with water scarcity, especially remote locales. However, their efficiency is often constrained by the variable climatic conditions. Conventional prediction methods fall short in consistently forecasting the yield, leaving a significant gap in optimizing solar still operations. Recognizing this, the introduction of machine learning becomes pivotal. With a robust predictive model, operators can avoid inefficiencies, inconsistent outputs, and sub-optimal resource utilization. The primary objective of this research is to determine the most suitable machine learning model tailored for predicting solar still output under specific environmental conditions. This research work assessed various machine learning models, including linear regression, decision trees, random forest, support vector machines, and multilayer perceptron. Evaluation metrics encompassed Mean Absolute Error (MAE), cross-validation, grid search, and randomized search techniques. Our results identified the Decision Tree model, registering a MAE of 5.43 and 5.74 through random and grid search methods, respectively, as the preeminent predictor for our dataset. This machine learning-centric methodology elevates the precision of solar still output predictions and paves the way for enhanced solar still designs and superior optimization of solar energy conversion mechanisms. © 2023 The Author(s)
Ключевые слова: DECISION TREE MODELLING
MACHINE LEARNING TECHNIQUES
PREDICTIVE MODELS
PRODUCTIVITY ESTIMATION
SOLAR STILL
URI: http://elar.urfu.ru/handle/10995/130871
Условия доступа: info:eu-repo/semantics/openAccess
cc-by-nc-nd
Текст лицензии: https://creativecommons.org/licenses/by-nc-nd/4.0/
Идентификатор SCOPUS: 85174639403
Идентификатор PURE: 46908703
ISSN: 2667-0100
DOI: 10.1016/j.envc.2023.100779
Сведения о поддержке: Qatar National Research Fund, QNRF: MME03-1226-210042
This work was supported by Qatar National Research Fund under the grant no. MME03-1226-210042 . The statements made herein are solely the responsibility of the authors.
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85174639403.pdf6,13 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons