Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130871
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMurugan, D. K.en
dc.contributor.authorSaid, Z.en
dc.contributor.authorPanchal, H.en
dc.contributor.authorGupta, N. K.en
dc.contributor.authorSubramani, S.en
dc.contributor.authorKumar, A.en
dc.contributor.authorSadasivuni, K. K.en
dc.date.accessioned2024-04-05T16:34:42Z-
dc.date.available2024-04-05T16:34:42Z-
dc.date.issued2023-
dc.identifier.citationMurugan, DK, Said, Z, Panchal, H, Gupta, N, Subramani, S, Kumar, A & Sadasivuni, K 2023, 'Machine learning approaches for real-time forecasting of solar still distillate output', Environmental Challenges, Том. 13, 100779. https://doi.org/10.1016/j.envc.2023.100779harvard_pure
dc.identifier.citationMurugan, D. K., Said, Z., Panchal, H., Gupta, N., Subramani, S., Kumar, A., & Sadasivuni, K. (2023). Machine learning approaches for real-time forecasting of solar still distillate output. Environmental Challenges, 13, [100779]. https://doi.org/10.1016/j.envc.2023.100779apa_pure
dc.identifier.issn2667-0100-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85174639403&doi=10.1016%2fj.envc.2023.100779&partnerID=40&md5=55e0dd5bd9ce1a544c4612df77ac56911
dc.identifier.otherhttps://doi.org/10.1016/j.envc.2023.100779pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130871-
dc.description.abstractSolar stills provide a promising avenue for freshwater production in regions grappling with water scarcity, especially remote locales. However, their efficiency is often constrained by the variable climatic conditions. Conventional prediction methods fall short in consistently forecasting the yield, leaving a significant gap in optimizing solar still operations. Recognizing this, the introduction of machine learning becomes pivotal. With a robust predictive model, operators can avoid inefficiencies, inconsistent outputs, and sub-optimal resource utilization. The primary objective of this research is to determine the most suitable machine learning model tailored for predicting solar still output under specific environmental conditions. This research work assessed various machine learning models, including linear regression, decision trees, random forest, support vector machines, and multilayer perceptron. Evaluation metrics encompassed Mean Absolute Error (MAE), cross-validation, grid search, and randomized search techniques. Our results identified the Decision Tree model, registering a MAE of 5.43 and 5.74 through random and grid search methods, respectively, as the preeminent predictor for our dataset. This machine learning-centric methodology elevates the precision of solar still output predictions and paves the way for enhanced solar still designs and superior optimization of solar energy conversion mechanisms. © 2023 The Author(s)en
dc.description.sponsorshipQatar National Research Fund, QNRF: MME03-1226-210042en
dc.description.sponsorshipThis work was supported by Qatar National Research Fund under the grant no. MME03-1226-210042 . The statements made herein are solely the responsibility of the authors.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-nc-ndother
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/unpaywall
dc.sourceEnvironmental Challenges2
dc.sourceEnvironmental Challengesen
dc.subjectDECISION TREE MODELLINGen
dc.subjectMACHINE LEARNING TECHNIQUESen
dc.subjectPREDICTIVE MODELSen
dc.subjectPRODUCTIVITY ESTIMATIONen
dc.subjectSOLAR STILLen
dc.titleMachine learning approaches for real-time forecasting of solar still distillate outputen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.envc.2023.100779-
dc.identifier.scopus85174639403-
local.contributor.employeeMurugan, D.K., Department of Mechanical Engineering, Velammal Engineering College, Chennai, Indiaen
local.contributor.employeeSaid, Z., Department of Sustainable and Renewable Energy Engineering, University of Sharjah, United Arab Emirates, Department of Industrial and Mechanical Engineering, Lebanese American University (LAU), Byblos, Lebanonen
local.contributor.employeePanchal, H., Department of Mechanical Engineering, Government Engineering College Patan, Gujarat, Indiaen
local.contributor.employeeGupta, N.K., Department of Mechanical Engineering, GLA University, Mathura, India, Department of Mechanical Engineering, Harcourt Butler Technical University, Uttar Pradesh, Kanpur, Indiaen
local.contributor.employeeSubramani, S., Department of Mechanical Engineering, Rajalakshmi Engineering College, Chennai, Indiaen
local.contributor.employeeKumar, A., Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeSadasivuni, K.K., Centre for Advanced Materials, Qatar University, Qatar, Department of Mechanical and Industrial Engineering, Qatar University, PO Box 2713, Doha, Qataren
local.volume13-
local.contributor.departmentDepartment of Mechanical Engineering, Velammal Engineering College, Chennai, Indiaen
local.contributor.departmentDepartment of Sustainable and Renewable Energy Engineering, University of Sharjah, United Arab Emiratesen
local.contributor.departmentDepartment of Mechanical Engineering, Government Engineering College Patan, Gujarat, Indiaen
local.contributor.departmentDepartment of Mechanical Engineering, GLA University, Mathura, Indiaen
local.contributor.departmentDepartment of Mechanical Engineering, Rajalakshmi Engineering College, Chennai, Indiaen
local.contributor.departmentDepartment of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentCentre for Advanced Materials, Qatar University, Qataren
local.contributor.departmentDepartment of Industrial and Mechanical Engineering, Lebanese American University (LAU), Byblos, Lebanonen
local.contributor.departmentDepartment of Mechanical Engineering, Harcourt Butler Technical University, Uttar Pradesh, Kanpur, Indiaen
local.contributor.departmentDepartment of Mechanical and Industrial Engineering, Qatar University, PO Box 2713, Doha, Qataren
local.identifier.pure46908703-
local.description.order100779-
local.identifier.eid2-s2.0-85174639403-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85174639403.pdf6,13 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons