Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130819
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorIvanova, A. V.en
dc.contributor.authorMarkina, M. G.en
dc.date.accessioned2024-04-05T16:33:31Z-
dc.date.available2024-04-05T16:33:31Z-
dc.date.issued2023-
dc.identifier.citationIvanova, A & Markina, M 2023, 'Portable Device for Potentiometric Determination of Antioxidant Capacity', Sensors, Том. 23, № 18, 7845. https://doi.org/10.3390/s23187845harvard_pure
dc.identifier.citationIvanova, A., & Markina, M. (2023). Portable Device for Potentiometric Determination of Antioxidant Capacity. Sensors, 23(18), [7845]. https://doi.org/10.3390/s23187845apa_pure
dc.identifier.issn1424-8220-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85172739825&doi=10.3390%2fs23187845&partnerID=40&md5=4bea9c60a2ecf386510a70672df24b901
dc.identifier.otherhttps://www.mdpi.com/1424-8220/23/18/7845/pdf?version=1694586709pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130819-
dc.description.abstractFor the first time, a prototype of a portable device for the potentiometric determination of antioxidant capacity based on a new measurement principle is proposed. A feature of the approach is the use of an electrochemical microcell with separated spaces and two identical electrodes with immobilized reagents. An antioxidant solution is introduced into one half-cell, and the antioxidants interact with the reagents. The other half-cell contains only reagents. The potential difference between the electrodes is due to the change in the ratio of the oxidized and reduced form of the reagents, which occurs as a result of the reaction with the antioxidants in one of the half-cells and is related to their concentration. The range of linearity of the microcell with immobilized reagents is 40–4000 μM-eq, and the limit of detection is 20 μM-eq. The device was successfully tested in the analysis of standard antioxidant solutions. The recoveries were (92–113)%, and the relative standard deviation did not exceed 15%. A good correlation was found between the data obtained by the approach and the potentiometric method in a macrocell for fruit juice analysis. Pearson’s coefficient for the obtained experimental data was 0.9955. The proposed portable device is promising and can be used in field conditions. © 2023 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF: 20-13-00142en
dc.description.sponsorshipThis research was funded by a grant from the Russian Science Foundation No. 20-13-00142, https://rscf.ru/project/20-13-00142/ (accessed on 6 June 2023).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.relationinfo:eu-repo/grantAgreement/RSF//20-13-00142en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceSensors2
dc.sourceSensorsen
dc.subjectANTIOXIDANT CAPACITYen
dc.subjectMICROCELLen
dc.subjectPORTABLE DEVICEen
dc.subjectPOTENTIOMETRYen
dc.subjectSCREEN-PRINTED ELECTRODEen
dc.subjectCHEMICAL REACTIONSen
dc.subjectELECTROCHEMICAL ELECTRODESen
dc.subjectFRUIT JUICESen
dc.subjectPOTENTIOMETERS (ELECTRIC MEASURING INSTRUMENTS)en
dc.subjectANTIOXIDANT CAPACITYen
dc.subjectELECTROCHEMICAL MICRO-CELLen
dc.subjectHALF CELLSen
dc.subjectIMMOBILIZED REAGENTSen
dc.subjectMICRO CELLen
dc.subjectPORTABLE DEVICEen
dc.subjectPOTENTIAL DIFFERENCEen
dc.subjectPOTENTIOMETRICSen
dc.subjectPOTENTIOMETRYen
dc.subjectSCREEN PRINTED ELECTRODESen
dc.subjectANTIOXIDANTSen
dc.subjectANTIOXIDANTen
dc.subjectPROCEDURESen
dc.subjectVOLTAMMETRYen
dc.subjectANTIOXIDANTSen
dc.subjectELECTRODESen
dc.subjectPOTENTIOMETRYen
dc.titlePortable Device for Potentiometric Determination of Antioxidant Capacityen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/s23187845-
dc.identifier.scopus85172739825-
local.contributor.employeeIvanova, A.V., Chemical Technological Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 19, Mira Str, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeMarkina, M.G., Chemical Technological Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 19, Mira Str, Ekaterinburg, 620002, Russian Federationen
local.issue18-
local.volume23-
dc.identifier.wos001075240800001-
local.contributor.departmentChemical Technological Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 19, Mira Str, Ekaterinburg, 620002, Russian Federationen
local.identifier.pure45662308-
local.description.order7845-
local.identifier.eid2-s2.0-85172739825-
local.fund.rsf20-13-00142-
local.identifier.wosWOS:001075240800001-
local.identifier.pmid37765901-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85172739825.pdf3,16 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons