Please use this identifier to cite or link to this item: https://elar.urfu.ru/handle/10995/130791
Title: Crystal structure and peculiarities of microwave parameters of Co1−xNixFe2O4 nano spinel ferrites
Authors: Hussein, M. M.
Saafan, S. A.
Abosheiasha, H. F.
Zhou, D.
Klygach, D. S.
Vakhitov, M. G.
Trukhanov, S. V.
Trukhanov, A. V.
Zubar, T. I.
Astapovich, K. A.
Zakaly, H. M. H.
Darwish, M. A.
Issue Date: 2023
Publisher: Royal Society of Chemistry
Citation: Hussein, MM, Saafan, SA, Abosheiasha, HF, Zhou, D, Klygach, DS, Vakhitov, MG, Trukhanov, SV, Trukhanov, AV, Zubar, TI, Astapovich, KA, Zakaly, HMH & Darwish, MA 2023, 'Crystal structure and peculiarities of microwave parameters of Co1−xNixFe2O4 nano spinel ferrites', RSC Advances, Том. 13, № 38, стр. 26879-26891. https://doi.org/10.1039/D3RA04557A
Hussein, M. M., Saafan, S. A., Abosheiasha, H. F., Zhou, D., Klygach, D. S., Vakhitov, M. G., Trukhanov, S. V., Trukhanov, A. V., Zubar, T. I., Astapovich, K. A., Zakaly, H. M. H., & Darwish, M. A. (2023). Crystal structure and peculiarities of microwave parameters of Co1−xNixFe2O4 nano spinel ferrites. RSC Advances, 13(38), 26879-26891. https://doi.org/10.1039/D3RA04557A
Abstract: Nanosized spinel ferrites Co1−xNixFe2O4 (where x = 0.0-1.0) or CNFO have been produced using a chemical method. The crystal structure's characteristics have been determined through the utilization of X-ray diffraction (XRD). It has been demonstrated that all samples have a single phase with cubic syngony (space group Fd3̄m). The lattice parameter and unit cell volume behavior correlate well with the average ionic radii of Co2+ and Ni2+ ions and their coordination numbers. Thus, an increase in the Ni2+ content from x = 0.0 to x = 1.0 leads to a decrease in the lattice parameter (from 8.3805 to 8.3316 Å) and unit cell volume (from 58.86 to 57.83 Å3). Elastic properties have been investigated using Fourier transform infrared (FTIR) analysis. The peculiarities of the microwave properties have been analyzed by the measured S-parameters in the range of 8-18 GHz. It was assumed that the energy losses due to reflection are a combination of electrical and magnetic losses due to polarization processes (dipole polarization) and magnetization reversal processes in the region of inter-resonant processes. A significant attenuation of the reflected wave energy (−10 … −21.8 dB) opens broad prospects for practical applications. © 2023 The Royal Society of Chemistry.
Keywords: ENERGY DISSIPATION
LATTICE CONSTANTS
MAGNETIZATION REVERSAL
POLARIZATION
WAVE ENERGY CONVERSION
CHEMICAL METHOD
CRYSTALS STRUCTURES
MICROWAVE PARAMETERS
NANOSIZED SPINELS
SINGLE PHASIS
SPINEL FERRITES
STRUCTURE CHARACTERISTIC
SYNGONY
UNIT-CELL VOLUME
X- RAY DIFFRACTIONS
FOURIER TRANSFORM INFRARED SPECTROSCOPY
URI: http://elar.urfu.ru/handle/10995/130791
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85171847697
WOS ID: 001062886000001
PURE ID: 46006234
ISSN: 2046-2069
DOI: 10.1039/d3ra04557a
Sponsorship: National University of Science and Technology, MISIS: K6-2022-043
Investigations were partially supported in the framework of the “Priority 2030” (NUST MISIS, project K6-2022-043).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85171847697.pdf1,81 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons