Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130700
Название: | AROUND THE ERDÖS–GALLAI CRITERION |
Авторы: | Baransky, V. A. Senchonok, T. A. |
Дата публикации: | 2023 |
Издатель: | Krasovskii Institute of Mathematics and Mechanics |
Библиографическое описание: | Baransky, V & Senchonok, T 2023, 'AROUND THE ERDÖS–GALLAI CRITERION', Ural Mathematical Journal, Том. 9, № 1, стр. 29-48. https://doi.org/10.15826/umj.2023.1.003 Baransky, V., & Senchonok, T. (2023). AROUND THE ERDÖS–GALLAI CRITERION. Ural Mathematical Journal, 9(1), 29-48. https://doi.org/10.15826/umj.2023.1.003 |
Аннотация: | By an (integer) partition we mean a non-increasing sequence λ = (λ1,λ2,…) of non-negative integers that contains a finite number of non-zero components. A partition λ is said to be graphic if there exists a graph G such that λ = dptG, where we denote by dptG the degree partition of G composed of the degrees of its vertices, taken in non-increasing order and added with zeros. In this paper, we propose to consider another criterion for a partition to be graphic, the ht-criterion, which, in essence, is a convenient and natural reformulation of the well-known Erdös–Gallai criterion for a sequence to be graphical. The ht-criterion fits well into the general study of lattices of integer partitions and is convenient for applications. The paper shows the equivalence of the Gale–Ryser criterion on the realizability of a pair of partitions by bipartite graphs, the ht-criterion and the Erdös–Gallai criterion. New proofs of the Gale–Ryser criterion and the Erdös–Gallai criterion are given. It is also proved that for any graphical partition there exists a realization that is obtained from some splitable graph in a natural way. A number of information of an overview nature is also given on the results previously obtained by the authors which are close in subject matter to those considered in this paper. © 2023, Krasovskii Institute of Mathematics and Mechanics. All rights reserved. |
Ключевые слова: | BIPARTITE GRAPH BIPARTITE-THRESHOLD GRAPH FERRERS DIAGRAM INTEGER PARTITION THRESHOLD GRAPH |
URI: | http://elar.urfu.ru/handle/10995/130700 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 54265303 |
Идентификатор SCOPUS: | 85166942630 |
Идентификатор PURE: | 43277564 |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2023.1.003 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85166942630.pdf | 233,46 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons