Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130683
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorEhsan, H.en
dc.contributor.authorAbbas, M.en
dc.contributor.authorEl-Rahman, M. A.en
dc.contributor.authorAli, M. R.en
dc.contributor.authorHendy, A. S.en
dc.date.accessioned2024-04-05T16:30:22Z-
dc.date.available2024-04-05T16:30:22Z-
dc.date.issued2023-
dc.identifier.citationEhsan, H, Abbas, MW, El-Rahman, MA, Ali, MR & Hendy, A 2023, 'The dynamical study of fractional complex coupled maccari system in nonlinear optics via two analytical approaches', Results in Physics, Том. 52, 106775. https://doi.org/10.1016/j.rinp.2023.106775harvard_pure
dc.identifier.citationEhsan, H., Abbas, M. W., El-Rahman, M. A., Ali, M. R., & Hendy, A. (2023). The dynamical study of fractional complex coupled maccari system in nonlinear optics via two analytical approaches. Results in Physics, 52, [106775]. https://doi.org/10.1016/j.rinp.2023.106775apa_pure
dc.identifier.issn2211-3797-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85166268393&doi=10.1016%2fj.rinp.2023.106775&partnerID=40&md5=82625558b5564098e4101739534e1da41
dc.identifier.otherhttps://doi.org/10.1016/j.rinp.2023.106775pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130683-
dc.description.abstractIn this work, the modified auxiliary equation method (MAEM) and the Riccati–Bernoulli sub-ODE method (RBM) are used to investigate the soliton solutions of the fractional complex coupled maccari system (FCCMS). Nonlinear partial differential equations (NLPDEs) can be transformed into a collection of algebraic equations by utilizing a travelling wave transformation, the MAEM, and the RBM. As a result, solutions to hyperbolic, trigonometric and rational functions with unconstrained parameters are obtained. The travelling wave solutions can also be used to generate the solitary wave solutions when the parameters are given particular values. There are several solutions that are modelled for different parameter combinations. We have developed a number of novel solutions, such as the kink, periodic, M-waved, W-shaped, bright soliton, dark soliton, and singular soliton solution. We simulate our figures in Mathematica and provide many 2D and 3D graphs to show how the beta derivative, M-truncated derivative and conformable derivative impacts the analytical solutions of the FCCMS.The results show how effectively the MAEM and RBM work together to extract solitons for fractional-order nonlinear evolution equations in science, technology, and engineering. © 2023 The Authorsen
dc.description.sponsorshipKing Khalid University, KKU: RGP2/69/44en
dc.description.sponsorshipThe third author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/69/44 .en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-nc-ndother
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/unpaywall
dc.sourceResults in Physics2
dc.sourceResults in Physicsen
dc.subjectBETA-DERIVATIVEen
dc.subjectCONFORMABLE DERIVATIVEen
dc.subjectFRACTIONAL COMPLEX COUPLED MACCARI SYSTEMen
dc.subjectM-TRUNCATED DERIVATIVEen
dc.subjectMODIFIED AUXILIARY EQUATION METHODen
dc.subjectRICCATI–BERNOULLI SUB-ODE METHODen
dc.titleThe dynamical study of fractional complex coupled maccari system in nonlinear optics via two analytical approachesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.rinp.2023.106775-
dc.identifier.scopus85166268393-
local.contributor.employeeEhsan, H., Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistanen
local.contributor.employeeAbbas, M., Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistanen
local.contributor.employeeEl-Rahman, M.A., Department of Physics, College of Science, King Khalid University, Abha, 61413, Saudi Arabiaen
local.contributor.employeeAli, M.R., Basic Engineering Science Department, Benha Faculty of Engineering, Benha University, Benha, Egypt, Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypten
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federationen
local.volume52-
dc.identifier.wos001051583000001-
local.contributor.departmentDepartment of Mathematics, University of Sargodha, Sargodha, 40100, Pakistanen
local.contributor.departmentDepartment of Physics, College of Science, King Khalid University, Abha, 61413, Saudi Arabiaen
local.contributor.departmentBasic Engineering Science Department, Benha Faculty of Engineering, Benha University, Benha, Egypten
local.contributor.departmentFaculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypten
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federationen
local.identifier.pure43271273-
local.description.order106775-
local.identifier.eid2-s2.0-85166268393-
local.identifier.wosWOS:001051583000001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85166268393.pdf4,86 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons