Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130566
Title: Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices
Authors: Lebedev, P. D.
Kuvshinov, O. A.
Issue Date: 2023
Publisher: Udmurt State University
Citation: Лебедев, ПД & Кувшинов, ОА 2023, 'АЛГОРИТМЫ ПОСТРОЕНИЯ СУБОПТИМАЛЬНЫХ ПОКРЫТИЙ ПЛОСКИХ ФИГУР КРУГАМИ В КЛАССАХ РЕГУЛЯРНЫХ РЕШЕТОК', Известия Института математики и информатики Удмуртского государственного университета, Том. 61, стр. 76-93. https://doi.org/10.35634/2226-3594-2023-61-05
Лебедев, П. Д., & Кувшинов, О. А. (2023). АЛГОРИТМЫ ПОСТРОЕНИЯ СУБОПТИМАЛЬНЫХ ПОКРЫТИЙ ПЛОСКИХ ФИГУР КРУГАМИ В КЛАССАХ РЕГУЛЯРНЫХ РЕШЕТОК. Известия Института математики и информатики Удмуртского государственного университета, 61, 76-93. https://doi.org/10.35634/2226-3594-2023-61-05
Abstract: The problem of covering a compact planar set M with a set of congruent disks is considered. It is assumed that the centers of the circles belong to some lattice. The criterion of optimality in one case is the minimum of the number of elements of the covering, and in the other case — the minimum of the Hausdorff deviation of the union of elements of the covering from the set M. To solve the problems, transformations of parallel transfer and rotation with the center at the origin can be applied to the lattice. Statements concerning sufficient conditions for sets of circles that provide solutions to the problems are proved. Numerical algorithms based on minimizing the Hausdorff deviation between two flat compacts are proposed. Solutions of a number of examples are given for various figures of M. © 2023 The Author(s).
Keywords: BRAVAIS LATTICE
CIRCLE
COVERING
HAUSDORFF DEVIATION
MINIMIZATION
URI: http://elar.urfu.ru/handle/10995/130566
Access: info:eu-repo/semantics/openAccess
RSCI ID: 53741290
SCOPUS ID: 85162751544
WOS ID: 001005574800005
PURE ID: 39251440
ISSN: 2226-3594
DOI: 10.35634/2226-3594-2023-61-05
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85162751544.pdf427,11 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.