Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130548
Название: Passive Fingerprinting of Same-Model Electrical Devices by Current Consumption
Авторы: Ronkin, M.
Bykhovsky, D.
Дата публикации: 2023
Издатель: MDPI
Библиографическое описание: Ronkin, M & Bykhovsky, D 2023, 'Passive Fingerprinting of Same-Model Electrical Devices by Current Consumption', Sensors, Том. 23, № 1, 533. https://doi.org/10.3390/s23010533
Ronkin, M., & Bykhovsky, D. (2023). Passive Fingerprinting of Same-Model Electrical Devices by Current Consumption. Sensors, 23(1), [533]. https://doi.org/10.3390/s23010533
Аннотация: One possible device authentication method is based on device fingerprints, such as software- or hardware-based unique characteristics. In this paper, we propose a fingerprinting technique based on passive externally measured information, i.e., current consumption from the electrical network. The key insight is that small hardware discrepancies naturally exist even between same-electrical-circuit devices, making it feasible to identify slight variations in the consumed current under steady-state conditions. An experimental database of current consumption signals of two similar groups containing 20 same-model computer displays was collected. The resulting signals were classified using various state-of-the-art time-series classification (TSC) methods. We successfully identified 40 similar (same-model) electrical devices with about 94% precision, while most errors were concentrated in confusion between a small number of devices. A simplified empirical wavelet transform (EWT) paired with a linear discriminant analysis (LDA) classifier was shown to be the recommended classification method. © 2023 by the authors.
Ключевые слова: CONSUMPTION ANALYSIS
CURRENT MEASUREMENT
DEVICE FINGERPRINTING
ELECTRICAL DEVICE
ELECTRICAL NETWORK
SWITCHED-MODE POWER SUPPLY (SMPS)
TIME-SERIES CLASSIFICATION (TSC)
COMPUTER HARDWARE
ELECTRIC NETWORK PARAMETERS
TIME SERIES
TIME SERIES ANALYSIS
WAVELET TRANSFORMS
CLASSIFICATION METHODS
CONSUMPTION ANALYSE
CURRENT CONSUMPTION
DEVICE FINGERPRINTING
ELECTRICAL DEVICES
ELECTRICAL NETWORKS
PASSIVE FINGERPRINTING
SWITCHED-MODE POWER SUPPLY
TIME SERIES CLASSIFICATIONS
TIME-SERIES CLASSIFICATION
DISCRIMINANT ANALYSIS
ELECTRICITY
WAVELET ANALYSIS
ELECTRICITY
WAVELET ANALYSIS
URI: http://elar.urfu.ru/handle/10995/130548
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор SCOPUS: 85145881369
Идентификатор WOS: 000908708600001
Идентификатор PURE: 33314599
ISSN: 1424-8220
DOI: 10.3390/s23010533
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85145881369.pdf619,45 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons