Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130548
Название: | Passive Fingerprinting of Same-Model Electrical Devices by Current Consumption |
Авторы: | Ronkin, M. Bykhovsky, D. |
Дата публикации: | 2023 |
Издатель: | MDPI |
Библиографическое описание: | Ronkin, M & Bykhovsky, D 2023, 'Passive Fingerprinting of Same-Model Electrical Devices by Current Consumption', Sensors, Том. 23, № 1, 533. https://doi.org/10.3390/s23010533 Ronkin, M., & Bykhovsky, D. (2023). Passive Fingerprinting of Same-Model Electrical Devices by Current Consumption. Sensors, 23(1), [533]. https://doi.org/10.3390/s23010533 |
Аннотация: | One possible device authentication method is based on device fingerprints, such as software- or hardware-based unique characteristics. In this paper, we propose a fingerprinting technique based on passive externally measured information, i.e., current consumption from the electrical network. The key insight is that small hardware discrepancies naturally exist even between same-electrical-circuit devices, making it feasible to identify slight variations in the consumed current under steady-state conditions. An experimental database of current consumption signals of two similar groups containing 20 same-model computer displays was collected. The resulting signals were classified using various state-of-the-art time-series classification (TSC) methods. We successfully identified 40 similar (same-model) electrical devices with about 94% precision, while most errors were concentrated in confusion between a small number of devices. A simplified empirical wavelet transform (EWT) paired with a linear discriminant analysis (LDA) classifier was shown to be the recommended classification method. © 2023 by the authors. |
Ключевые слова: | CONSUMPTION ANALYSIS CURRENT MEASUREMENT DEVICE FINGERPRINTING ELECTRICAL DEVICE ELECTRICAL NETWORK SWITCHED-MODE POWER SUPPLY (SMPS) TIME-SERIES CLASSIFICATION (TSC) COMPUTER HARDWARE ELECTRIC NETWORK PARAMETERS TIME SERIES TIME SERIES ANALYSIS WAVELET TRANSFORMS CLASSIFICATION METHODS CONSUMPTION ANALYSE CURRENT CONSUMPTION DEVICE FINGERPRINTING ELECTRICAL DEVICES ELECTRICAL NETWORKS PASSIVE FINGERPRINTING SWITCHED-MODE POWER SUPPLY TIME SERIES CLASSIFICATIONS TIME-SERIES CLASSIFICATION DISCRIMINANT ANALYSIS ELECTRICITY WAVELET ANALYSIS ELECTRICITY WAVELET ANALYSIS |
URI: | http://elar.urfu.ru/handle/10995/130548 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85145881369 |
Идентификатор WOS: | 000908708600001 |
Идентификатор PURE: | 33314599 |
ISSN: | 1424-8220 |
DOI: | 10.3390/s23010533 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85145881369.pdf | 619,45 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons