Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130467
Title: Coexisting Attractors and Multistate Noise-Induced Intermittency in a Cycle Ring of Rulkov Neurons
Authors: Bashkirtseva, I. A.
Pisarchik, A. N.
Ryashko, L. B.
Issue Date: 2023
Publisher: MDPI
Citation: Bashkirtseva, IA, Pisarchik, AN & Ryashko, LB 2023, 'Coexisting Attractors and Multistate Noise-Induced Intermittency in a Cycle Ring of Rulkov Neurons', Mathematics, Том. 11, № 3, 597. https://doi.org/10.3390/math11030597
Bashkirtseva, I. A., Pisarchik, A. N., & Ryashko, L. B. (2023). Coexisting Attractors and Multistate Noise-Induced Intermittency in a Cycle Ring of Rulkov Neurons. Mathematics, 11(3), [597]. https://doi.org/10.3390/math11030597
Abstract: We study dynamics of a unidirectional ring of three Rulkov neurons coupled by chemical synapses. We consider both deterministic and stochastic models. In the deterministic case, the neural dynamics transforms from a stable equilibrium into complex oscillatory regimes (periodic or chaotic) when the coupling strength is increased. The coexistence of complete synchronization, phase synchronization, and partial synchronization is observed. In the partial synchronization state either two neurons are synchronized and the third is in antiphase, or more complex combinations of synchronous and asynchronous interaction occur. In the stochastic model, we observe noise-induced destruction of complete synchronization leading to multistate intermittency between synchronous and asynchronous modes. We show that even small noise can transform the system from the regime of regular complete synchronization into the regime of asynchronous chaotic oscillations. © 2023 by the authors.
Keywords: CHAOS
COUPLED OSCILLATORS
DISCRETE SYSTEM
INTERMITTENCY
MULTISTABILITY
NONLINEAR DYNAMICS
SYNCHRONIZATION
URI: http://elar.urfu.ru/handle/10995/130467
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85158843917
WOS ID: 000930061800001
PURE ID: 35452935
ISSN: 2227-7390
DOI: 10.3390/math11030597
metadata.dc.description.sponsorship: Russian Science Foundation, RSF: N 21-11-00062
The work was supported by the Russian Science Foundation (N 21-11-00062).
RSCF project card: 21-11-00062
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85158843917.pdf17,27 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons