Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130403
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMaslova, N. V.en
dc.contributor.authorRevin, D. O.en
dc.date.accessioned2024-04-05T16:19:48Z-
dc.date.available2024-04-05T16:19:48Z-
dc.date.issued2023-
dc.identifier.citationMaslova, NV & Revin, DO 2023, 'On the pronormality of subgroups of odd index in some direct products of finite groups', Journal of Algebra and its Applications, Том. 22, № 04, 2350083. https://doi.org/10.1142/S0219498823500834harvard_pure
dc.identifier.citationMaslova, N. V., & Revin, D. O. (2023). On the pronormality of subgroups of odd index in some direct products of finite groups. Journal of Algebra and its Applications, 22(04), [2350083]. https://doi.org/10.1142/S0219498823500834apa_pure
dc.identifier.issn0219-4988-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124829305&doi=10.1142%2fS0219498823500834&partnerID=40&md5=321a2aec3e6112bf489595494b8a14e61
dc.identifier.otherhttps://arxiv.org/pdf/2003.09479pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130403-
dc.description.abstractsubgroup H of a group G is said to be pronormal in G if H and Hg are conjugate in (H,Hg) for each g ∈ G. Some problems in Finite Group Theory, Combinatorics and Permutation Group Theory were solved in terms of pronormality, therefore, the question of pronormality of a given subgroup in a given group is of interest. Subgroups of odd index in finite groups satisfy a native necessary condition of pronormality. In this paper, we continue investigations on pronormality of subgroups of odd index and consider the pronormality question for subgroups of odd index in some direct products of finite groups. In particular, in this paper, we prove that the subgroups of odd index are pronormal in the direct product G of finite simple symplectic groups over fields of odd characteristics if and only if the subgroups of odd index are pronormal in each direct factor of G. Moreover, deciding the pronormality of a given subgroup of odd index in the direct product of simple symplectic groups over fields of odd characteristics is reducible to deciding the pronormality of some subgroup H of odd index in a subgroup of Qt i=1 Z3 Symni , where each Symni acts naturally on {1, . . . ,ni}, such that H projects onto Qt i=1 Symni . Thus, in this paper, we obtain a criterion of pronormality of a subgroup H of odd index in a subgroup of Qt i=1 Zpi Symni , where each pi is a prime and each Symni acts naturally on {1, . . . , ni}, such that H projects onto Qt i=1 Symni . © 2023 World Scientific Publishing Company.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherWorld Scientificen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJournal of Algebra and Its Applications2
dc.sourceJournal of Algebra and its Applicationsen
dc.subjectDIRECT PRODUCTen
dc.subjectFINITE GROUPen
dc.subjectODD INDEXen
dc.subjectPRONORMAL SUBGROUPen
dc.subjectSIMPLE SYMPLECTIC GROUPen
dc.subjectWREATH PRODUCTen
dc.titleOn the pronormality of subgroups of odd index in some direct products of finite groupsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1142/S0219498823500834-
dc.identifier.scopus85124829305-
local.contributor.employeeMaslova, N.V., Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russian Federation, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeRevin, D.O., Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russian Federation, Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russian Federation, Novosibirsk State University, Novosibirsk, Russian Federationen
local.issue4-
local.volume22-
dc.identifier.wos000849400900001-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russian Federationen
local.contributor.departmentUral Federal University, Yekaterinburg, Russian Federationen
local.contributor.departmentSobolev Institute of Mathematics SB RAS, Novosibirsk, Russian Federationen
local.contributor.departmentNovosibirsk State University, Novosibirsk, Russian Federationen
local.identifier.pure36037685-
local.description.order2350083-
local.identifier.eid2-s2.0-85124829305-
local.identifier.wosWOS:000849400900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85124829305.pdf275,8 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.