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ON THE PRONORMALITY OF SUBGROUPS OF ODD INDEX

IN SOME DIRECT PRODUCTS OF FINITE GROUPS

N. V. MASLOVA, D. O. REVIN

Abstract. A subgroup H of a group G is said to be pronormal in G if H

and Hg are conjugate in 〈H,Hg〉 for each g ∈ G. Some problems in Finite

Group Theory, Combinatorics, and Permutation Group Theory were

solved in terms of pronormality, therefore, the question of pronormality

of a given subgroup in a given group is of interest. Subgroups of odd index

in finite groups satisfy a native necessary condition of pronormality. In

this paper we continue investigations on pronormality of subgroups of

odd index and consider the pronormality question for subgroups of odd

index in some direct products of finite groups.

In particular, in this paper we prove that the subgroups of odd index

are pronormal in the direct product G of finite simple symplectic groups

over fields of odd characteristics if and only if the subgroups of odd

index are pronormal in each direct factor of G. Moreover, deciding the

pronormality of a given subgroup of odd index in the direct product of

simple symplectic groups over fields of odd characteristics is reducible to

deciding the pronormality of some subgroup H of odd index in a subgroup

of
∏t

i=1
Z3 ≀ Symni

, where each Symni
acts naturally on {1, . . . , ni},

such that H projects onto
∏t

i=1
Symni

. Thus, in this paper we obtain a

criterion of pronormality of a subgroup H of odd index in a subgroup of∏t

i=1
Zpi ≀Symni

, where each pi is a prime and each Symni
acts naturally

on {1, . . . , ni}, such that H projects onto
∏t

i=1
Symni

.

Keywords: finite group, pronormal subgroup, odd index, direct product,

simple symplectic group, wreath product.

1. Introduction

Throughout the paper we consider only finite groups, and henceforth the term
group means finite group. Our further terminology and notation are mostly standard
and can be found in [10]. However, we will denote by Symn and Altn the symmetric
group and the alternating group of degree n, respectively.

A subgroup H of a group G is said to be pronormal in G (notation H prnG) if
H and Hg are conjugate in 〈H,Hg〉 for each g ∈ G. Some of well-known examples
of pronormal subgroups are the following: normal subgroups; maximal subgroups;
Sylow subgroups; Sylow subgroups of proper normal subgroups; Hall subgroups of
solvable groups; Hall subgroups of proper normal subgroups of solvable groups. The
following assertion by Ph. Hall demonstrates a close connection between properties
of permutation representations of finite groups and pronormality of their subgroups.
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Proposition 1 ([9, Theorem 6.6]). Let G be a group and H ≤ G. Then H is

pronormal in G if and only if in any transitive permutation representation of G,

the subgroup NG(H) acts transitively on the set fix(H) of fixed points of H.

Some problems in Finite Group Theory as well as in Combinatorics and in
Permutation Group Theory are solved in terms of pronormality. For example,
consider the well-known Frattini Argument: if G is a finite group with normal

subgroup H, and if P is a Sylow subgroup of H, then G = NG(P )H . It is easy to see
that the condition ”P is a Sylow subgroup of H” can be replaced to the following
more general condition ”P is a pronormal subgroup of G”, and the implication
remains true. Furthermore, the concept of pronormal subgroup in some sense is
universal with respect to the Frattini Argument: in the introduced notation, a
subgroup P is pronormal in G if and only if P is pronormal in H and G = NG(P )H
(see [7, Lemma 4]). In 1971, T. Peng [21] showed that if G is solvable, then a
subgroup P is pronormal in G if and only if P possesses the Frattini property in G:
L = NL(P )H for all subgroups L,H ≤ G such that HEL and P ≤ H . In particular,
solvable groups have Frattini factorizations with respect to Hall subgroups of their
normal subgroups. Recently E. P. Vdovin and the second author [24] have showed
that the existence of a π-Hall subgroup in a group G for some set π of primes is
equivalent to the existence of a pronormal π-Hall subgroup in each normal subgroup
of G. Thus, the Eπ-groups possess corresponding Frattini factorizations.

Moreover, the concept of pronormal subgroup is closely connected to the Cayley
isomorphism problem as follows. According to L. Babai [1], a finite group G is a CI-

group (abbreviation of Cayley isomorphism property) if between any two isomorphic
relational structures on the group G as underlying set which are invariant under
the group

GR = {gR | g ∈ G}

of right multiplications gR : x → xg (where g, x ∈ G), there exists an isomorphism
which is at the same time an automorphism of G. L. Babai [1] proved that a group G
is a CI-group if and only if the subgroup GR is pronormal in Sym(G), in particular,
if G is a CI-group, then G is abelian; with using this Babai’s result, P. Palfy [20]
has obtained the complete classification of CI-groups. Moreover, in [1], L. Babai
characterized combinatorial CI-objects (in particular, Cayley graphs of groups) in
terms of concepts close to pronormality. These characterizations are useful tools,
for example, in researches of Cayley isomorphism problem concerning undirected
graphs (see, for example, [5]).

Thus, the following problem is of interest.

General Problem. Is a given subgroup H pronormal in a given group G?

Ch.E. Praeger [22] investigated pronormal subgroups of permutation groups. She
has obtained the following result.

Proposition 2. Let G be a transitive permutation group on a set Ω of n points,

and let K be a non-trivial pronormal subgroup of G. Suppose that K fixes exactly

f points of Ω. Then f ≤ 1
2 (n − 1), and if f = 1

2 (n − 1), then K is transitive on

its support in Ω, and either G ≥ Alt(n), or G = GLd(2) acting on the n = 2d − 1
non-zero vectors, and K is the pointwise stabilizer of a hyperplane.

Thus, if in some transitive permutation representation of G, |fix(H)| is too big,
then H is not pronormal in G. Therefore, first of all, it is important to consider
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General Problem for a subgroup H of a group G such that H contains a subgroup
S which is pronormal in G since in this case H is already satisfying a necessary
condition of pronormality in G. Thus, it is interesting solve General Problem for
overgroups of Sylow subgroups in finite groups, in particular, for subgroups of odd
index in a finite group G which are exactly overgroups of Sylow 2-subgroups of G.

In 2012, E. P. Vdovin and the second author [23] proved that the Hall subgroups
are pronormal in all simple groups and, guided by the analysis in their proof, they
conjectured that any subgroup of odd index of a simple group is pronormal in this
group. This conjecture was disproved in [13, 14]. The following problem naturally
arose.

Problem A. Determine finite simple groups in which the subgroups of odd index
are pronormal.

Problem A was investigated in [12, 13, 14, 15, 17], and in this moment, Problem
A is still open only for some linear and unitary simple groups over fields of odd
characteristics. More detailed surveys of investigations on pronormality of subgroups
of odd index in finite (not necessary simple) groups can be found in survey papers [8,
16]. These surveys contain new results and some conjectures and open problems. In
particular, in [16, Section 10] we have provided ideas how to reduce solving General
Problem for a subgroup of odd index in a non-simple group to solving General
Problem for some subgroup of odd index in a group of smaller order. In connection
with this, the following problem arose.

Problem B. Determine direct products of finite simple groups in which the subgroups
of odd index are pronormal.

A detailed motivation for Problem B was provided in [7] and in the survey paper
[16]. In general, the question of pronormality of a subgroup in a direct product
of finite groups is natural and was studied in some special cases. For example,
B. Brewster, A. Mart́ınez-Pastor, and M. D. Pérez-Ramos [2] have given criteria
to characterize abnormal, pronormal and locally pronormal subgroups of a direct
product of two finite groups A×B, under hypotheses of solvability for at least one
of the factors, either A or B (see for some details Lemma 9 in Section 2).

Note that the subgroups of odd index are pronormal in groups with self-normalizing
Sylow 2-subgroups (see [12, Lemma 5]), and Sylow 2-subgroups are self-normalizing
in the direct product of groups with self-normalizing Sylow 2-subgroups (see, for
example, [14, Lemma 2]). Taking into account that the Sylow 2-subgroups are self-
normalizing in many nonabelian simple groups [11], we conclude that the situation
when the subgroups of odd index are pronormal in a direct product of finite simple
groups occurs rather often. However, there are examples of nonabelian simple groups
G (in which the Sylow 2-subgroups are not self-normalizing) such that all the
subgroups of odd index are pronormal in G, but the group G×G contains a non-
pronormal subgroups of odd index (see [7, Proposition 1]).

In this paper we consider direct products of finite simple symplectic groups. If
q ≡ ±3 (mod 8), then the Sylow 2-subgroups are not self-normalizing in the group
PSp2n(q) for any n (see [11]). However, we prove the following theorem.

Theorem 1. Let G =
t∏

i=1

Gi, where for each i ∈ {1, ..., t}, Gi
∼= Spni

(qi) for odd qi.

Then the following statements are equivalent:
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(1) all the subgroups of odd index are pronormal in G;
(2) for each i ∈ {1, . . . , t}, all the subgroups of odd index are pronormal in Gi;
(3) for each i ∈ {1, . . . , t}, if qi ≡ ±3 (mod 8), then ni is either a power of 2 or

is a number of the form 2w(22k + 1) for non-negative integers w and k.

Note that if q is odd, then |Z(Sp2n(q))| = 2 for any n. Therefore, if H is a

subgroup of odd index in the group G =
t∏

i=1

Sp2ni
(qi), where all qi are odd, then

Z(G) ≤ H . Thus, applying Lemma 3 from Section 2 below, we obtain the following
corollary.

Corollary 1. Let G =
t∏

i=1

Gi, where for each i ∈ {1, ..., t}, Gi
∼= PSpni

(qi) for

odd qi. Then the following statements are equivalent:
(1) all the subgroups of odd index are pronormal in G;
(2) for each i ∈ {1, . . . , t}, all the subgroups of odd index are pronormal in Gi;
(3) for each i ∈ {1, . . . , t}, if qi ≡ ±3 (mod 8), then ni is either a power of 2 or

is a number of the form 2w(22k + 1) for non-negative integers w and k.

Moreover, guided by the analysis in the proof of Theorem 1 (see Remark 1
in the end of Section 3), we conclude that solving General Problem for a given
subgroup H of odd index in the direct product of symplectic groups over fields of
odd characteristics is reducible to solving General Problem for some subgroup H∗

(depending on H) of odd index in some group

K ≤

t∏

i=1

Z3 ≀ Symmi

such that H ≤ K and H projects onto each Symmi
. In this paper, we obtain a

criterion of pronormality of such a subgroup H in such a group K, see Theorem 2
formulated in Section 4.

Thus, General Problem for a subgroup of odd index in a direct product of
simple symplectic groups over fields of odd characteristics (in particular, in a simple
symplectic group over a field of odd characteristic) can be formally solved with using
inductive reasonings. As an example, the detailed solution of General Problem for
an arbitrary subgroup of odd index in the group PSp6(3) is presented in Example 1,
see Section 4 after Theorem 2.

The following problems naturally arise.

Problem 1. Find a criterion of pronormality of a subgroup of odd index in the
direct product of simple symplectic groups over fields of odd characteristics (in
particular, in a simple symplectic group over a field of odd characteristic).

Problem 2. Provide an effective algorithm which solves General Problem for a
subgroup of odd index in the direct product of simple symplectic groups over fields
of odd characteristics (in particular, in a simple symplectic group over a field of
odd characteristic).

2. Preliminaries and auxiliary results

The largest integer power of a prime p dividing a positive integer k is called the
p-part of k and is denoted by kp.
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Let m and n be non-negative integers with the binary expansions

m =

∞∑

i=0

ai · 2
i and n =

∞∑

i=0

bi · 2
i,

where ai, bi ∈ {0, 1} for every i. We write m � n if ai ≤ bi for each i and m ≺ n if
additionally m 6= n. It is clear that m � n if and only if n−m � n.

Let G be a group and p be a prime. We write H ≤p G if H ≤ G and |G : H |p = 1.

Let Xp be the class of groups with self-normalizing Sylow p-subgroups.

Let Yp be the class of groups in which the overgroups of Sylow p-subgroups are
pronormal. Lemma 5 below shows that Xp ⊂ Yp. Note that Y2 is exactly the class
of all groups in which the subgroups of odd index are pronormal.

The following two lemmas deal with overgroups of Sylow subgroups in direct
products of finite groups and are of independent interest.

Lemma 1. Let p be a prime and Q be a subgroup of the group L = L1 × L2 × . . .× Ln,

and let πi : L → Li be the projection for each i ∈ {1, . . . , n}. Assume that Q ≤p L
and for some i, πi(Q) = Li and Li/Op(Li) is an almost simple group such that

(Li/Op(Li))/Soc(Li/Op(Li)) is a p-group. Then Li ≤ Q.

Proof. Note that Op(Li) ≤ Op(L). Therefore, Op(Li) ≤ Q since Q ≤p L. Thus, we
can assume assume that Op(Li) = 1, and so Li is almost simple.

Now one can prove this assertion repeating all the reasonings from the proof of
[7, Lemma 9] and replacing the prime 2 into an arbitrary prime p as follows. Since
Li E L, we have Q ∩ Li E Q, and therefore, πi(Q ∩ Li) is a normal subgroup of
πi(Q) = Li. Choose S ∈ Sylp(L) such that S ≤ Q. Then S ∩ Li ∈ Sylp(Li) and

S ∩ Li = πi(S ∩ Li) ≤ πi(Q ∩ Li).

Therefore, πi(Q ∩ Li) E Li and πi(Q ∩ Li) ≤p Li. The group Li is almost simple
and Li/Soc(Li) is a p-group, so πi(Q ∩ Li) = Li, whence Li ≤ Q. �

Lemma 2. Let G = X × Y for groups X and Y and let

ξ : G → X and η : G → Y

be the projections. Assume that X ∈ Xp and H ≤p G. Then ξ(H) = H ∩ X and

η(H) = H ∩ Y . In particular,

H = 〈ξ(H), η(H)〉 = ξ(H)× η(H).

Proof. Since H ∩ Y ≤ η(H) and h = ξ(h)η(h) for every h ∈ H , it is sufficient to
establish that H ∩X = ξ(H). Now X EG implies that H ∩X EH and

H ∩X = ξ(H ∩X)E ξ(H).

On the other hand, H ≤p G means H ∩ X ≤p X . If P ∈ Sylp(H ∩ X), then
P ∈ Sylp(X) and NX(P ) = P since X ∈ Xp. The Frattini Argument implies that

ξ(H) = (H ∩X)Nξ(H)(P ) ≤ (H ∩X)NX(P ) = (H ∩X)P = H ∩X.

�

In the following series of lemmas we provide some general properties of pronormal
subgroups in finite groups.
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Lemma 3 (See [12, Lemma 3] and [6, Ch. 1, Prop. 6.4]). Let AEG and H ≤ G.

Then the following statements hold:
(1) if H prnG, then HA/AprnG/A;
(2) H prnG if and only if HA/AprnG/A and H prnNG(HA);
(3) if A ≤ H, then H prnG if and only if H/AprnG/A;
(4) if p is a prime and H ≤p G, then H prnG if and only if H/Op(G) prnG/Op(G).

The following assertion is a direct corollary of Proposition 1, however, the assertion
was independently proved in [23, Lemma 5].

Lemma 4. Suppose that G is a group and H ≤ G. Assume also that H contains

a Sylow subgroup S of G. Then H is pronormal in G is and only if H and Hg are

conjugate in 〈H,Hg〉 for each g ∈ NG(S).

Lemma 5 (See [12, Lemma 5]). Suppose that H and M are subgroups of a group

G and H ≤ M .

(1) If H prnG, then H prnM ;
(2) If S ≤ H for some Sylow subgroup S of G, NG(S) ≤ M , and H prnM , then

H prnG.

Lemma 6 (See [13, Theorem 1]). Let H and V be subgroups of a group G such

that V is an abelian normal subgroup of G and G = HV . Then H is pronormal in

G if and only if U = NU (H)[H,U ] for any H-invariant subgroup U of V .

Lemma 7 (See [7, Lemma 11]). Let G = V ⋊ B, where V is an abelian normal

subgroup of G and B ≤ G, and let H ≤ G. Define : G → B such that g = b,
where g = vb for v ∈ V and b ∈ B. Then H prnHV implies H prnHV .

Lemma 8 (See [7, Lemma 6]). Let N E G, G/N ∈ Xp, and H ≤p G. Then

H prnG if and only if H prnHN .

Lemma 9. [2, Propositions 2.1, 4.3, 4.4 and Corollary 4.7] Let G = G1 ×G2 and

H ≤ G. For i ∈ {1, 2}, denote by πi the projection G → Gi and set

Ci = {x ∈ Gi | [x, πi(H)] ≤ Gi ∩H}.

Then the following statements hold.

(1) Ci = NG(H) ∩Gi.

(2) If πi(H) prnGi for every i ∈ {1, 2} and

NG(H) = 〈NGi
(πi(H)) | i ∈ {1, 2}〉 = NG1

(π1(H))×NG2
(π2(H)),

then H prnG.

(3) If one of Gi, where i ∈ {1, 2}, is solvable, then H prnG if and only if

πi(H) prnGi for every i ∈ {1, 2} and

NG(H) = 〈NGi
(πi(H)) | i ∈ {1, 2}〉 = NG1

(π1(H))×NG2
(π2(H)).

(4) If one of Gi, where i ∈ {1, 2}, is solvable, then H prnG if and only if

πi(H) prnGi and NGi
(πi(H)) ≤ Ci for each i ∈ {1, 2}.

Two further assertions give criteria of pronormality of overgroups of Sylow subgroups
in extensions of finite groups with special properties.
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Lemma 10. Assume that p is a prime and X and Y are groups such that X ∈ Xp.

Let H ≤p X × Y and let

ξ : G → X and η : G → Y

be the projections. Then the following statements hold:
(i) H is pronormal in X × Y if and only if η(H) is pronormal in Y .

(ii) X × Y ∈ Yp if and only if Y ∈ Yp.

Proof. Prove Statement (i). By Lemma 3, if H is pronormal in X × Y , then ξ(H)
is pronormal in ξ(X × Y ) = X and η(H) is pronormal in η(X × Y ) = Y .

Show the converse. Suppose that η(H) is pronormal in Y and note that ξ(H)
is pronormal in X because X ∈ Xp ⊂ Yp and ξ(H) ≤p ξ(X × Y ) = X . Since
H ≤p X × Y and X ∈ Xp, Lemma 2 implies that H = ξ(H)× η(H). Therefore,

NX×Y (H) = NX(ξ(H))×NY (η(H)).

Now H is pronormal in X × Y by Lemma 9 part (2).

Statement (ii) follows directly from Statement (i).
�

Proposition 3. Let G be a group, AEG, where G/A ∈ Xp and A ∈ Yp. Let T be

a Sylow p-subgroup of A. Then

(i) if H ≥ S for some S ∈ Sylp(G), T = A ∩ S, Y = NA(H ∩ A) and Z =
NH∩A(T ), then Z is normal in both NH(T ) and NY (T ) and the following conditions

are equivalent:
(1) H is pronormal in G;
(2) NH(T )/Z is pronormal in (NH(T )NY (T ))/Z;
(3) NH(T ) is pronormal in NH(T )NY (T ).

(ii) G ∈ Yp if and only if NG(T )/T ∈ Yp.

Proof. Statement (ii) is [7, Theorem 1].

To prove Statement (i) we need to go throw the proof of [7, Lemma 15] and
generalize the reasonings. Define

X = NHA(H ∩ A).

Note that H ≤ X , therefore,

X = NHA(H ∩A) = HNA(H ∩ A) = HY.

By the Frattini Argument,

H = NH(T )(H ∩ A) and Y = NY (T )(H ∩ A).

Moreover, NH(T ) normalizes NY (T ) and

NH(T )∩(H∩A) = NY (T )∩(H∩A) = NH∩A(T ) = NG(T )∩(H∩A) = (NH(T )NY (T ))∩(H∩A).

Note that by Lemma 3,

H = NH(T )(H ∩ A) prnX = NHA(H ∩ A) = (H ∩ A)NY (T )NH(T )

if and only if

NH(T )(H ∩ A)/(H ∩ A) prn (NY (T )NH(T )(H ∩ A))/(H ∩ A)

if and only if

NH(T )/NH∩A(T ) prnNH(T )NY (T )/NH∩A(T )
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if and only if

NH(T ) prnNH(T )NY (T ).

Thus, we have proved that the following conditions are equivalent:
(1) H is pronormal in NHA(H ∩ A);
(2) NH(T )/Z is pronormal in (NH(T )NY (T ))/Z;
(3) NH(T ) is pronormal in NH(T )NY (T ).

Now the condition A ∈ Yp and [7, Lemma 15, part (2)] imply that H is pronormal
in NHA(H ∩A) if and only if H is pronormal in HA.

The condition G/A ∈ Xp and Lemma 8 imply that H is pronormal in G if and
only if H is pronormal in HA.

�

In the further series of lemmas we provide some properties of subgroups of odd
index in finite groups of special type.

Lemma 11 (See [11]). Let G = PSpn(q), where q is odd, and S ∈ Syl2(G).
(1) If q ≡ ±1 (mod 8), then NG(S) = S.

(2) If q ≡ ±3 (mod 8) and n = 2s1 + · · · + 2st for s1 > · · · > st ≥ 0, then

NG(S)/S is elementary abelian of order 3t.

Lemma 12 (See [18] and [19]). Let G = Sp2n(q), where n ≥ 1 and q is odd; let V
be the natural module of G. A subgroup H is a maximal subgroup of odd index in

G if and only if one of the following statements holds:
(1) H ∼= Sp2n(q0), where q = qr0 and r is an odd prime, is the centralizer in G

of a field automorphism of order r;
(2) H ∼= Sp2m(q)×Sp2(n−m)(q) is the stabilizer of a non-degenerate subspace of

dimension 2m of V , and n ≻ m;
(3) H ∼= Sp2m(q) ≀ Symt is the stabilizer of an orthogonal decomposition V =

⊕
Vi into a sum of pairwise isometric non-degenerate subspaces Vi of dimension

2m, m = 2w, w is a non-negative integer, and n = mt;
(4) n = 1 and H ∼= SL2(q0).2 is the centralizer in G of a field automorphism of

order 2;
(5) n = 1, H/Z(G) ∼= Alt4, q is prime, and q = 5 or q ≡ ±3,±13 (mod 40);
(6) n = 1, H/Z(G) ∼= Sym4, q is prime, and q ≡ ±7 (mod 16);
(7) n = 1, H/Z(G) ∼= Alt5, q is prime, and q ≡ 11, 19, 21, 29 (mod 40);
(8) n = 1, H/Z(G) ∼= Dq+1, and 7 < q ≡ 3 (mod 4);
(9) n = 2, H/Z(G) ∼= 24.Alt5, q is prime, and q ≡ ±3 (mod 8).

Lemma 13. Let L = Sp2w(q) for odd q and w ≥ 1, P ∈ Syl2(L), and G =

L ≀ Symn, where Symn acts naturally on {1, . . . , n}. Let K =
n∏

i=1

Ki, where each

Ki is isomorphic to L, be a normal subgroup of G, which coincides with the base

of this wreath product. Let S ∈ Syl2(G), T = K ∩ S, and Ti = Ki ∩ T . Then the

following statements hold:
(1) Ti

∼= P for each i;

(2) T =
n∏

i=1

Ti
∼= P × · · · × P

︸ ︷︷ ︸

n times

;
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(3) NK(T ) =
n∏

i=1

NKi
(Ti) ∼= NL(P )× · · · ×NL(P )

︸ ︷︷ ︸

n times

;

(4) NG(T ) ∼= NL(P ) ≀ Symn, where Symn acts naturally on {1, . . . , n};
(5) NG(T )/T ∼= (NL(P )/P ) ≀ Symn

∼= Z ≀ Symn, where Symn acts naturally on

{1, . . . , n}, Z ∼= Z3 if q ≡ ±3 (mod 8), and Z is trivial if q ≡ ±1 (mod 8).

Proof. Assertions (1)–(3) are obvious. Assertion (4) easily follows from (3) and the
Frattini Argument. Assertion (5) follows from (4) and Lemma 11.

�

In the following series of lemmas we provide some results on pronormality of
subgroups of odd index in finite groups.

Lemma 14 (See [13, Corollary]). Let G = A ≀ Symn = HV be the wreath product

of an abelian group A by the symmetric group H = Symn acting naturally on the

set {1, . . . , n}, where V denotes the base of the wreath product. Then the subgroup

H is pronormal in G if and only if (|A|, n) = 1.

Lemma 15 (See [7, Theorem 2]). Let A be an abelian group and

G =

t∏

i=1

(A ≀ Symni
),

where each Symni
acts naturally on {1, . . . , ni}. Then the subgroups of odd index

are pronormal in G if and only if for any positive integer m, the inequality m � ni

for some i implies that (|A|,m) is a power of 2.

Lemma 16 (See [15]). Let G = PSp2n(q). Then G ∈ Y2 if and only if one of the

following statements holds:

(1) q 6≡ ±3 (mod 8);
(2) n is of the form 2w or 2w(22k +1), where k and w are non-negative integers.

Lemma 17 (See [7, Theorem 3]). Let G =
t∏

i=1

Gi, where for each i ∈ {1, . . . , t},

Gi
∼= Sp2ni

(qi), each qi is odd, and each ni is a power of 2. Then all the subgroups

of odd index are pronormal in G.

3. Proof of Theorem 1

(3) ⇒ (1) Let us tell that a group G satisfy condition (∗) if the following
statements hold:

— G =
t∏

i=1

Gi, where Gi
∼= Sp2ni

(qi) for each i ∈ {1, ..., t};

— each qi is odd;
— if qi ≡ ±3 (mod 8) for some i, then ni is either a power of 2 or is a number

of the form 2wi(22ki + 1), where wi and ki are non-negative integers.

Assume that G is a group of the smallest order satisfying (∗), such that G
contains a non-pronormal subgroup H ≤2 G, and take some S ∈ Syl2(G) with
S ≤ H . By Lemma 11, Sp2ni

(q) ∈ X2 if qi ≡ ±1 (mod 8), therefore, Lemma 10
and the minimality of G implies that qi ≡ ±3 (mod 8) for each i ∈ {1, . . . t}.

Let πi : G → Gi be the projection for each i ∈ {1, . . . t}. If πi(H) = Gi for
some i, then Gi ≤ H by Lemma 1. Thus, H/Gi is a non-pronormal subgroup of
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odd index in G/Gi
∼=

∏

j 6=i

Gi by Lemma 3. But the group G/Gi satisfy condition (∗),

a contradiction to the minimality of G.
So, for each i, there exists a maximal subgroup Mi < Gi such that πi(H) ≤ Mi.

Thus, for any i,

H ≤ M(i) =
∏

j 6=i

Gj ×Mi.

Possibilities for Mi are listed in Lemma 12.

Assume that for some i, Mi
∼= Sp2ni

(q̃i), where qi = q̃rii and ri is an odd prime.
Note that qi ≡ ±3 (mod 8) implies q̃i ≡ ±3 (mod 8). It is easy to see that in this
case M(i) satisfies condition (∗), and H is pronormal in M(i) by the minimality
of G. Moreover, NG(S) = NM(i)(S) by Lemma 11. Thus, H prnG by Lemma 5, a
contradiction.

Assume that for some i, Mi is the stabilizer of a non-degenerate subspace of
dimension 2mi of the natural module of Gi, and ni ≻ mi. Note that

Mi
∼= Sp2mi

(qi)× Sp2(ni−mi)(qi).

In this case M(i) satisfies condition (∗) since ni ≻ mi. By the minimality of G,
H prnM . Moreover, since ni � mi, we have NG(S) = NM(i)(S) by Lemma 11.
Thus, H prnG by Lemma 5, a contradiction.

So, by Lemma 12, for each i such that ni is not a power of 2, Mi is the stabilizer
of an orthogonal decomposition of the corresponding natural module Vi of Gi into a
sum of pairwise isometric non-degenerate subspaces of dimension 2si, and si = 2wi

for a non-negative integer wi. Note that by [10, Proposition 4.9.2], in this case we
have

Mi
∼= Sp2si(qi) ≀ Symmi

,

where ni = simi and Symmi
acts naturally on {1, . . . ,mi}. Put

Ri =

{

Mi, if ni is not a power of 2,

Gi, otherwise.

If ni is a power of 2, then put si = ni and mi = 1. Thus,

H ≤2 R =
t∏

i=1

Ri
∼=

t∏

i=1

Sp2si(qi) ≀ Symmi
= N ⋊ C,

where N =
t∏

i=1

(Sp2si(qi))
mi and C =

t∏

i=1

Symmi
.

Note that N ∈ Y2 by Lemma 17. Moreover, R/N ∼= C ∈ X2 (see, for example,
[3, Lemma 4]).

Let T ∈ Syl2(N). Then by Lemmas 11 and 13,

NR(T )/T ∼=

t∏

i=1

Z3 ≀ Symmi
.

Note that for each i ∈ {1, . . . , t}, 3 does not divide m if m � mi. Indeed, since
each qi ≡ ±3 (mod 8), (∗) implies that mi = 2wi or mi = 2wi(22ki + 1) for some
non-negative integers wi and ki. Therefore, if m � mi, then m is ether a power of
2 itself or

m = 2wi(22ki + 1) ≡ (−1)wi+1 (mod 3).
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Thus, by Lemma 15, NR(T )/T ∈ Y2. Hence, R ∈ Y2 by Proposition 3 and H is
pronormal in R. Moreover, NG(S) = NR(S) by Lemma 11. Thus, H is pronormal
in G by Lemma 5, a contradiction.

(1) ⇒ (2) It is easy to see that if for some i, Gi contains a non-pronormal
subgroups Hi of odd index, then G contains a non-pronormal subgroupHi×

∏

j 6=i Gj

of odd index. Thus, Gi ∈ Y2 for each i ∈ {1, . . . , t}.

(2) ⇒ (3) follows from Lemma 16. �

Remark 1. Theorem 1 provides a criterion when all the subgroups of odd index are
pronormal in the direct product of symplectic groups over fields of odd characteristics.
However, it easy follows form the proof of Theorem 1 that solving General Problem
for a subgroup H of odd index in the direct product G of symplectic groups over
fields of odd characteristics is reducible to solving General Problem for the subgroup
H in some subgroup

R =

t∏

i=1

Sp2si(qi) ≀ Symmi
,

where each si is a power of 2, each qi ≡ ±3 (mod 8), and each Symmi
acts naturally

on {1, . . . ,mi}, moreover, we can assume that this action is primitive. Proposition 3
allows to reduce solving General Problem for H in R to solving General Problem for
a subgroups H∗ (which depends on H) of odd index in the factor-group NR(T )/T ,
where T is a Sylow 2-subgroup of H ∩ A and A is the base of the wreath product
R, and

NR(T )/T ∼=

t∏

i=1

Z3 ≀ Symmi
.

Moreover, H∗ projects naturally to each Symmi
, and we can assume that the image

of H∗ is a primitive subgroup of Symmi
for each i. Since H∗ is a subgroup of odd

index in NR(T )/T , its image in Symmi
contains a transposition and, therefore, by

the well-known Jordan theorem [25, Theorem 13.3], the image of H∗ coincides with
Symmi

for each i ∈ {1, . . . , t}. In Section 4 we obtain a criterion which allows to
answer the question, is H∗ pronormal in NR(T )/T ?

4. Pronormality of a subgroup of odd index in the direct product of

groups of the type Zp ≀ Symn

Let

G =

t∏

i=1

Gi = V ⋊B, where Gi
∼= Zpi

≀ Symni
for each i,

each pi is an odd prime, and each Symni
acts naturally on {1, . . . , ni};

V =

t∑

i=1

Vi, where Vi = (Zpi
)ni for each i,

and

B =

t∏

i=1

Bi, where Bi = Symni
for each i.

Define the map : G → B such that g = b for g = vb, where v ∈ V and b ∈ B.

Let πi : G → Gi be the projection for each i ∈ {1, . . . , t}.
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It is easy to see that Gi = Vi ⋊ Bi for each i. Let i : Gi → Bi be the
corresponding natural epimorphism for each i ∈ {1, . . . , t}.

Let πi : B → Bi be the corresponding projection for each i ∈ {1, ..., t}.

It is easy to see that for each i ∈ {1, ..., t}, the corresponding diagram

G −−−−→
πi

Gi



y



y i

B −−−−→
πi

Bi

is commutative.

In this section, we obtain a criterion of pronormality of a subgroup H ≤2 G such

that πi(H)
i
is a primitive subgroup of Symni

for each i ∈ {1, . . . , t} or, equivalently,

H = B. Let us explain that H = B if each πi(H)
i
is a primitive subgroup of Symni

.

Note that for each i ∈ {1, . . . , t}, πi(H) ≤2 Gi, therefore, πi(H)
i
≤2 Bi = Symni

and so, πi(H)
i

contains a transposition. Thus, by [25, Theorem 13.3],

πi(H)
i
= Bi = Symni

for each i ∈ {1, . . . , t}.

Recall that for each i, Bi = Symni
∈ X2 by [3, Lemma 4]. Thus, H =

t∏

i=1

πi(H)
i
= B

by Lemma 2.

First, consider the case t = 1 and specify our notation for this situation.
Let G = Zp ≀ Symn = V ⋊B, where p is an odd prime and B = Symn acts

naturally on {1, . . . , n}, and let V = (Zp)
n coincides with the base of the wreath

product. Define
V + = {(x, x, . . . , x) | x ∈ Zp} ≤ V

and

V − = {(x1, x2, . . . , xn) | xi ∈ Zp and

n∑

i=1

xi = 0} ≤ V.

Since V is abelian, G acts on V by the natural way.

Lemma 18. In the introduced notation, let G = Zp ≀ Symn, where p is an odd

prime. Assume that H = Symn. Then the following statements hold:
(1) all the H-invariant subgroups of V are 0, V +, V −, and V ;
(2) [H,V −] = [H,V ] = [H,V −] = [H,V ] = V −;
(3) the only proper normal subgroup of odd index in G is BV −;
(4) BV − does not contain a proper normal subgroup of odd index;
(5) if V − ≤ H, then H ∈ {BV −, G} and H EG.

Proof. (1) Follows from [10, Proposition 5.3.4], for example.

(2) It is easy to see that

[V −, H ] = [V −, H ] = [V −, B].

Moreover, it is clear that

[H,V −] = [H,V −] ≤ [H,V ] = [H,V ] ≤ V −.
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Prove that V − ≤ [H,V −]. Let i, j ∈ {1, . . . , t} with i < j and 〈a〉 = Zp. Define
wij(a) ∈ V as follows:

wij(a) = (x1, x2, . . . , xn), where xi = a, xj = −a, and xk = 0 for k 6∈ {i, j}.

Recall that
V − = 〈wij(a) | 1 ≤ i < j ≤ t〉.

Moreover, [wij(a), (i, j)] = wij(−2a), 〈−2a〉 = Zp (since p is odd), and H = B
contains all the transpositions. Now it is clear that V − ≤ [V −, B] = [V −, H ].

(3), (4) It is easy to see that BV − is a proper normal subgroup of odd index in G.
Let K be a normal subgroup of odd index in G (of BV −, respectively). Then by the
Sylow theorems, K contains each Sylow 2-subgroup of G (of BV −, respectively).
In particular, K contains each Sylow 2-subgroup of B and each transposition of B.
Therefore, K contains B (which is generated by these transpositions). Thus, by
part (2) of this lemma, K contains [V −, B] = V −, and so, K ≥ BV −.

(5) Assume that V − ≤ H . Show that B ≤ H . Let s be a transposition from B.
Since H = B, there exists h ∈ H such that h = sv for some v ∈ V . Note that |s| = 2
and |v| = p is odd. Using elementary calculations, it is easy to show that hp = sv−

for some v− ∈ [V,B]. By part (2) of this lemma, [V,B] = V −. Since hp ∈ H and
V − ≤ H , we have s ∈ H . Thus, H contains each transposition from B. Therefore,
B ≤ H and BV − ≤ H . Now |G : BV −| = p implies H ∈ {BV −, G} and H EG by
part (3) of this lemma.

�

Proposition 4. In the introduced notation, let G = Zp ≀ Symn, where p is an odd

prime, and H ≤ G such that H = B = Symn. Then the following statements hold:
(1) if p does not divide n, then H is pronormal in G;
(2) if p divides n, then H is pronormal in G if and only if V − ≤ H ;
(3) if H ≤ K < G, then H is pronormal in K.

Proof. Note that H ∩ V is an H-invariant subgroup of V , therefore, by Lemma 18
part (1), H ∩ V ∈ {0, V +, V −, V }.

If p does not divide n, then by Lemma 14, H = B is pronormal in G = V B =
VH . Now, Lemma 7 implies that H is pronormal in G = VH . Therefore, for each
K such that H ≤ K ≤ G we have that H is pronormal in K by Lemma 5.

Let p divides n. Then n > 2 and V + < V −. Suppose that H is pronormal in G.
Show that V − ≤ H . By Lemma 18 part (1), it is sufficient to understand that
H ∩ V 6= 0 and H ∩ V 6= V +.

Assume that H ∩ V = 0. Then

NV (H) = CV (H) = CV (H) = V +.

By Lemma 18 part (2), we have [H,V ] = V −. Recall that V + < V −. So,

NV (H) + [H,V ] = V − < V.

Lemma 6 implies that H is not pronormal in VH = G.
Assume that H∩V = V +. Let u = (u1, . . . , un) ∈ NV (H). Then [u, h] ∈ H∩V =

V + for each h ∈ H . So, if we take h such that h is a transposition (i, j), then we
obtain that ui − uj = uj − ui. The oddness of p implies that ui = uj . Thus,
NV (H) ≤ V +. By Lemma 18 part (2), [H,V ] = V −. Thus,

NV (H) + [H,V ] ≤ V + + V − = V − < V.
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Lemma 6 implies that H is not pronormal in G.

Assume that V − ≤ H . By Lemma 18 part (5), H ∈ {BV −, G} and HEG. Thus,
H prnG.

Let K be a subgroup of G such that H ≤ K and K < G. Then V 6≤ K and all
the possibilities for H-invariant subgroups from K ∩ V are 0, V +, and V −. Now
recall that by Lemma 18 part (2), [H,V −] = V −, and V + = CV +(H) ≤ NV +(H)
since V + ≤ Z(G). Therefore, by Lemma 6, H is pronormal in (K ∩ V )H = K.

�

Now consider the case t > 1. For each i ∈ {1, . . . , t}, define corresponding
subgroups V +

i and V −
i of Vi as above.

Let K be a subgroup of G such that H ≤ K ≤ G. It follows from Lemma 3
part (1) that if for some i, πi(H) in not pronormal in πi(K), then H is not pronormal
in K.

Suppose πi(H) is pronormal in πi(K) for each i ∈ {1, . . . , t} and show that H is
pronormal in K. Assume that pi divides ni for some i. By Proposition 4, if πi(K) =
Gi, then V −

i ≤ πi(H). By Lemma 18 part (5), we have πi(H) ∈ {BiV
−
i , Gi}. Note

that H ∩Gi is a normal subgroup in H . Consiquently,

H ∩Gi = πi(H ∩Gi)E πi(H) and |πi(H) : H ∩Gi| is odd.

Parts (3) and (4) of Lemma 18 imply that BiV
−
i EH ∩ Gi. Moreover, BiV

−
i EG

and by Lemma 3, H is pronormal in K if and only if H/(BiV
−
i ) is pronormal in

K/(BiV
−
i ). Note that Gi/BiV

−
i

∼= Zpi
= Zpi

≀ Sym1 and pi does not divide 1, of
course. Thus, replacing K and H with the corresponding quotients by the normal
subgroup of G generated by all BiV

−
i such that pi divides ni and πi(K) = Gi, we

can assume that for each i, if pi divides ni, then πi(K) ≤ BiV
−
i . Prove the following

assertion.

Proposition 5. In the introduced notation, let

R =

t0∏

i=1

BiVi ×

t∏

i=t0+1

BiV
−
i

be a subgroup of G. Additionally assume that pi does not divide ni if 1 ≤ i ≤ t0,
and pi divides ni if t0 + 1 ≤ i ≤ t. Suppose that H ≤ K ≤ R and H =

∏t
i=1 Bi.

Then H is pronormal in K.

Proof. By Lemma 5, it is sufficient to prove that H is pronormal in R. Note that
R = (R ∩ V )H . Thus, we use Lemma 6.

Let U be an H-invariant (equivalently, H-invariant) subgroup of R∩V . For each
i ∈ {1, . . . , t}, denote by σi : V → Vi the corresponding projection. Furthermore,
consider the restriction of to H and denote by Hi the complete preimage of Bi

under the epimorphism H → B. By Lemma 18 part (2), for each i we have

V −
i ≥

[
V −
i , H

]
≥

[
V −
i , Hi

]
=

[

V −
i , Hi

]

=
[
V −
i , Bi

]
= V −

i .

Therefore, V −
i =

[
V −
i , H

]
for each i.
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Assume that σj(U) 6≤ V +
j for some j. Then by Lemma 18 part (1), we have

σj(U) ≥ V −
j . Thus,

V −
j =

[

V −
j , Hj

]

=
[
V −
j , Hj

]
≤ [σj(U), Hj ] = [U,Hj] ≤ [U,H ] ≤ U.

So, if σj(U) 6≤ V +
j , then V −

j ≤ U .

Show that each u ∈ U can be presented in the form u = u+ + u−, where
u− ∈ [U,H ] and u+ ∈ CU (H).

Let u =
t∑

i=1

ui, where ui ∈ Vi.

Assume i ≤ t0. Then
Vi = V +

i ⊕ V −
i .

So, there exists a unique decomposition

ui = u+
i + u−

i ,where u+
i ∈ V +

i and u−
i ∈ V −

i .

Moreover, if u−
i 6= 0, then σi(U) 6≤ V +

i . Therefore V −
i ≤ U and we have

u−
i ∈ U ∩ V −

i and u+
i ∈ U ∩ V +

i .

Let i > t0. In this case V +
i < V −

i . Define

u+
i =

{

ui, if ui ∈ V +
i ;

0, if ui ∈ V −
i \ V +

i ;
and u−

i =

{

0, if ui ∈ V +
i ;

ui, if ui ∈ V −
i \ V +

i .

Let

u+ =
t∑

i=1

u+
i and u− =

t∑

i=1

u−
i .

So, u+, u− ∈ U and u = u+ + u−. Now u−
i ∈ V −

i for each i, and if u−
i 6= 0 for some

i, then
[
V −
i , Bi

]
=

[

V −
i , Hi

]

= V −
i ≤ U.

Thus, if u−
i 6= 0, then there are wi ∈ V −

i ≤ U and hi ∈ Hi such that u−
i =

[
wi, h̄i

]
=

[wi, hi]. In the case u−
i = 0, we put hi = 1 and wi = 0. Let

h =

t∏

i=1

hi and w =

t∑

i=1

wi.

We have
u− = [w, h̄] = [w, h] ∈ [U,H ].

Taking into account that V +
i ≤ Z(R) for each i ∈ {1, . . . , t}, we obtain that

u+ ∈ CU (H).

So, for each u ∈ U we have the decomposition

u = u+ + u− ∈ CU (H) + [U,H ].

Therefore,
U ≤ CU (H) + [U,H ] ≤ NU (H) + [U,H ].

The inclusion NU (H) + [U,H ] ≤ U is clear. Application of Lemma 6 completes the
proof. Thus, H is pronormal in R. �

So, we have proved the following theorem.
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Theorem 2. Let G =
t∏

i=1

Gi, where Gi
∼= Zpi

≀Symni
for each i, each pi is an odd

prime, and each Symni
acts naturally on {1, . . . , ni}. In the introduced notation,

assume that H is a (non-trivial) subgroup of odd index of G such that πi(H)
i
is a

primitive subgroup of Symni
for each i ∈ {1, . . . , t}. Then the following statements

hold:

(i) H =
t∏

i=1

Symni
;

(ii) for any K ≤ G such that H ≤ K, H is pronormal in K if and only if πi(H)
is pronormal in πi(K) for each i ∈ {1, . . . , t}; and

(iii) if t = 1 (here we put p1 = p and n1 = n for brevity), then the following

statements hold:
(1) if p does not divide n, then H is pronormal in G;
(2) if p divides n, then H is pronormal in G if and only if V − ≤ H ;
(3) if H ≤ K < G, then H is pronormal in K.

Remark 2. In is easy to see that for each positive integer n, Z2 ≀ Symn ∈ X2 if
Symn acts naturally on {1, . . . , n}. Thus, the requirement of oddness of each pi can
be omitted in parts (i) and (ii) of Theorem 2 by Lemma 10.

Consider an example of application the obtained results to solving General
Problem for a given subgroup of odd index in the finite simple symplectic group
PSp6(3).

Example 1. Let G = PSp6(3) and H ≤2 G. Decide, is H pronormal in G?

Let G = Sp6(3), V be the natural module of G, and H be the complete preimage
of H in G. It is easy to see that H ≤2 G. Recall that by Lemma 3, H is pronormal
in G if and only if H is pronormal in G.

We can assume that H is a proper subgroup of G. Therefore, there exists a
maximal subgroup M of G such that H ≤ M . The index |G : M | is odd.

Since q = 3 is prime, by Lemma 12, possibilities for M are the following:

Type (1) M ∼= Sp2(3) × Sp4(3) is the stabilizer of a non-degenerate subspace of
dimension 2 of V ;

Type (2) M ∼= Sp2(3) ≀ Sym3 is the stabilizer of an orthogonal decomposition

V =
3⊕

i=1

Vi

into a sum of 3 pairwise isometric non-degenerate subspaces Vi of dimension 2.

Let S ∈ Syl2(G) such that S ≤ H .
If there is a subgroup M of Type (1) such that H ≤ M , then H is reducible

on V . Moreover, H is pronormal in M by Lemma 17. By Lemma 11, we have
NG(S) = NM (S). Therefore, H is pronormal in G by Lemma 5.

If there is no a maximal subgroup M of Type (1) such that H ≤ M , then by
Lemma 12, H is irreducible on V and there is a maximal subgroup M of Type (2)
such that H ≤ M ∼= Sp2(3) ≀Sym3, where Sym3 acts naturally on the set {1, 2, 3}.
By Lemma 11, we have NG(S) = NM (S). Therefore, by Lemma 5, H is pronormal
in G if and only if H is pronormal in M .

By [4], Sp2(3) ∼= Z2.Alt4, therefore,

H ≤ M ∼= (Z2.Alt4) ≀ Sym3.
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Moreover, since H is irreducible on V and the dimension of Vi was chosen as
maximal as possible (since there was the only choice dim(Vi) = 2), we conclude
that H projects onto Sym3.

By Lemma 3, H is pronormal in M if and only if H/O2(M) is pronormal in
M/O2(M) ∼= Z3 ≀ Sym3. Now to decide is H pronormal in M , it is sufficient to
apply Theorem 2 (really, in this case it is sufficient to apply Proposition 4 which is
a part of Theorem 2). �

Thus, Problems 1 and 2 formulated in Section 1 are of interest. Moreover, the
following problems naturally arise.

Problem 3. Find a criterion of pronormality of a given subgroup of odd index

in the group G =
t∏

i=1

Zpi
≀ Symni

, where each pi is a prime and each Symni
acts

naturally on {1, . . . , ni}.

Problem 4. Provide an effective algorithm which solves General Problem for an

arbitrary subgroup of odd index in the group G =
t∏

i=1

Zpi
≀Symni

, where each pi is

a prime and each Symni
acts naturally on {1, . . . , ni}.
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