Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/130337
Title: | Baire property of spaces of [0, 1]-valued continuous functions |
Authors: | Osipov, A. V. Pytkeev, E. G. |
Issue Date: | 2023 |
Publisher: | Springer-Verlag Italia s.r.l. |
Citation: | Osipov, AV & Pytkeev, EG 2023, 'Baire property of spaces of [0, 1]-valued continuous functions', Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, Том. 117, № 1, 38. https://doi.org/10.1007/s13398-022-01371-w Osipov, A. V., & Pytkeev, E. G. (2023). Baire property of spaces of [0, 1]-valued continuous functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 117(1), [38]. https://doi.org/10.1007/s13398-022-01371-w |
Abstract: | A topological space X is Baire if the intersection of any sequence of open dense subsets of X is dense in X. Let Cp(X, [0 , 1]) denote the space of all continuous [0, 1]-valued functions on a Tychonoff space X with the topology of pointwise convergence. In this paper, we have obtained a characterization for the function space Cp(X, [0 , 1]) to be Baire for a Tychonoff space X all separable closed subsets of which are C∗-embedded. In particular, this characterization holds for normal spaces and, hence, for metrizable spaces. Moreover, we established that the space Cp(X, [0 , 1]) is Baire if and only if Cp(X, K) is Baire for a Peano continuum K. © 2022, The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid. |
Keywords: | ALMOST OPEN MAP BAIRE PROPERTY FUNCTION SPACE PEANO CONTINUUM FUNCTIONAL ANALYSIS ALMOST OPEN MAP BAIRE PROPERTY CLOSED SUBSETS CONTINUOUS FUNCTIONS DENSE SUBSET FUNCTION SPACES OPEN MAPS PEANO CONTINUUM POINTWISE CONVERGENCE TOPOLOGICAL SPACES TOPOLOGY |
URI: | http://elar.urfu.ru/handle/10995/130337 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85143602628 |
WOS ID: | 000895683000001 |
PURE ID: | 32884827 |
ISSN: | 1578-7303 |
DOI: | 10.1007/s13398-022-01371-w |
Sponsorship: | The authors would like to thank Evgenii Reznichenko for several valuable comments on Propositions 3.1 and 3.2 and the referee for careful reading and valuable suggestions. |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85143602628.pdf | 169,58 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.