Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130337
Title: Baire property of spaces of [0, 1]-valued continuous functions
Authors: Osipov, A. V.
Pytkeev, E. G.
Issue Date: 2023
Publisher: Springer-Verlag Italia s.r.l.
Citation: Osipov, AV & Pytkeev, EG 2023, 'Baire property of spaces of [0, 1]-valued continuous functions', Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, Том. 117, № 1, 38. https://doi.org/10.1007/s13398-022-01371-w
Osipov, A. V., & Pytkeev, E. G. (2023). Baire property of spaces of [0, 1]-valued continuous functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 117(1), [38]. https://doi.org/10.1007/s13398-022-01371-w
Abstract: A topological space X is Baire if the intersection of any sequence of open dense subsets of X is dense in X. Let Cp(X, [0 , 1]) denote the space of all continuous [0, 1]-valued functions on a Tychonoff space X with the topology of pointwise convergence. In this paper, we have obtained a characterization for the function space Cp(X, [0 , 1]) to be Baire for a Tychonoff space X all separable closed subsets of which are C∗-embedded. In particular, this characterization holds for normal spaces and, hence, for metrizable spaces. Moreover, we established that the space Cp(X, [0 , 1]) is Baire if and only if Cp(X, K) is Baire for a Peano continuum K. © 2022, The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid.
Keywords: ALMOST OPEN MAP
BAIRE PROPERTY
FUNCTION SPACE
PEANO CONTINUUM
FUNCTIONAL ANALYSIS
ALMOST OPEN MAP
BAIRE PROPERTY
CLOSED SUBSETS
CONTINUOUS FUNCTIONS
DENSE SUBSET
FUNCTION SPACES
OPEN MAPS
PEANO CONTINUUM
POINTWISE CONVERGENCE
TOPOLOGICAL SPACES
TOPOLOGY
URI: http://elar.urfu.ru/handle/10995/130337
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85143602628
WOS ID: 000895683000001
PURE ID: 32884827
ISSN: 1578-7303
DOI: 10.1007/s13398-022-01371-w
Sponsorship: The authors would like to thank Evgenii Reznichenko for several valuable comments on Propositions 3.1 and 3.2 and the referee for careful reading and valuable suggestions.
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85143602628.pdf169,58 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.