Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130324
Title: Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction
Authors: Boukhvalov, D. W.
D’Olimpio, G.
Mazzola, F.
Kuo, C. -N.
Mardanya, S.
Fujii, J.
Politano, G. G.
Lue, C. S.
Agarwal, A.
Vobornik, I.
Torelli, P.
Politano, A.
Issue Date: 2023
Publisher: American Chemical Society
Citation: Boukhvalov, DW, D’Olimpio, G, Mazzola, F, Kuo, C-N, Mardanya, S, Fujii, J, Politano, GG, Lue, CS, Agarwal, A, Vobornik, I, Torelli, P & Politano, A 2023, 'Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction', The journal of physical chemistry letters, Том. 14, № 12, стр. 3069-3076. https://doi.org/10.1021/acs.jpclett.3c00113
Boukhvalov, D. W., D’Olimpio, G., Mazzola, F., Kuo, C-N., Mardanya, S., Fujii, J., Politano, G. G., Lue, C. S., Agarwal, A., Vobornik, I., Torelli, P., & Politano, A. (2023). Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction. The journal of physical chemistry letters, 14(12), 3069-3076. https://doi.org/10.1021/acs.jpclett.3c00113
Abstract: In recent years, the correlation between the existence of topological electronic states in materials and their catalytic activity has gained increasing attention, due to the exceptional electron conductivity and charge carrier mobility exhibited by quantum materials. However, the physicochemical mechanisms ruling catalysis with quantum materials are not fully understood. Here, we investigate the chemical reactivity, ambient stability, and catalytic activity of the topological nodal-line semimetal AuSn4. Our findings reveal that the surface of AuSn4 is prone to oxidation, resulting in the formation of a nanometric SnO2 skin. This surface oxidation significantly enhances the material’s performance as a catalyst for the hydrogen evolution reaction in acidic environments. We demonstrate that the peculiar atomic structure of oxidized AuSn4 enables the migration of hydrogen atoms through the Sn-O layer with a minimal energy barrier of only 0.19 eV. Furthermore, the Volmer step becomes exothermic in the presence of Sn vacancies or tin-oxide skin, as opposed to being hindered in the pristine sample, with energy values of −0.62 and −1.66 eV, respectively, compared to the +0.46 eV energy barrier in the pristine sample. Our model also suggests that oxidized AuSn4 can serve as a catalyst for the hydrogen evolution reaction in alkali media. Additionally, we evaluate the material’s suitability for the carbon dioxide reduction reaction, finding that the presence of topologically protected electronic states enhances the migration of hydrogen atoms adsorbed on the catalyst to carbon dioxide. © 2023 The Authors. Published by American Chemical Society.
Keywords: ATOMS
CARBON DIOXIDE
CARRIER MOBILITY
CATALYST ACTIVITY
CHEMICAL STABILITY
ELECTRONIC STATES
OXIDATION
POLLUTION CONTROL
QUANTUM THEORY
TIN OXIDES
TOPOLOGY
CATALYTIC POTENTIAL
CHARGE-CARRIER MOBILITY
CO 2 REDUCTION
ELECTRON CHARGE
ELECTRON CONDUCTIVITY
HYDROGEN ATOMS
HYDROGEN EVOLUTION REACTIONS
HYDROGEN-EVOLUTION
NODAL LINE
]+ CATALYST
BINARY ALLOYS
URI: http://elar.urfu.ru/handle/10995/130324
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85151313221
WOS ID: 000956223700001
PURE ID: 37081009
ISSN: 1948-7185
DOI: 10.1021/acs.jpclett.3c00113
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85151313221.pdf5,12 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons