Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130254
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShoppert, A.en
dc.contributor.authorValeev, D.en
dc.contributor.authorAlekseev, K.en
dc.contributor.authorLoginova, I.en
dc.date.accessioned2024-04-05T16:16:59Z-
dc.date.available2024-04-05T16:16:59Z-
dc.date.issued2023-
dc.identifier.citationShoppert, A, Valeev, D, Alekseev, K & Loginova, I 2023, 'Enhanced Precipitation of Gibbsite from Sodium Aluminate Solution by Adding Agglomerated Active Al(OH)3 Seed', Metals, Том. 13, № 2, 193. https://doi.org/10.3390/met13020193harvard_pure
dc.identifier.citationShoppert, A., Valeev, D., Alekseev, K., & Loginova, I. (2023). Enhanced Precipitation of Gibbsite from Sodium Aluminate Solution by Adding Agglomerated Active Al(OH)3 Seed. Metals, 13(2), [193]. https://doi.org/10.3390/met13020193apa_pure
dc.identifier.issn2075-4701-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85149251459&doi=10.3390%2fmet13020193&partnerID=40&md5=ee5db83cc960ce1989ce8c4d74ca4fba1
dc.identifier.otherhttps://www.mdpi.com/2075-4701/13/2/193/pdf?version=1674984583pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130254-
dc.description.abstractThe addition of active seed for increasing the precipitation rate leads to the formation of fine Al(OH)3 particles that complicates separation of solid from the mother liquor. In this study, the enhanced precipitation of coarse Al(OH)3 from sodium aluminate solution using active agglomerated seed was investigated. Aluminum salt (Al2(SO4)3) were used for active agglomerated seed precipitation at the initial of the process. About 50% of precipitation rate was obtained when these agglomerates were used as a seed in the amount of 20 g L−1 at 25 °C within 10 h. The agglomerated active seed and precipitate samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). SEM images showed that agglomerates consist of flake-like particles that can be stick together by bayerite (β-Al(OH)3) acting as a binder. The precipitation temperature above 35 °C and the high concentration of free alkali (αk = 1.645Na2Ok/Al2O3 > 3) lead to the agglomerates refinement that can be associated with the bayerite dissolution. © 2023 by the authors.en
dc.description.sponsorshipRussian Academy of Sciences, РАН: FMUS-2019-24en
dc.description.sponsorshipThis research was funded by the Project of the State Assignment, FEUZ-2021-0017. The method used to determine the chemical composition of solutions by ICP-OES (see Section “Analysis”) were funded by the Project of the State Assignment (Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, No. FMUS-2019-24).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceMetals2
dc.sourceMetalsen
dc.subjectAGGLOMERATIONen
dc.subjectALUMINAen
dc.subjectBAUXITEen
dc.subjectBAYER PROCESSen
dc.subjectCOARSE GIBBSITEen
dc.subjectSEEDED PRECIPITATIONen
dc.titleEnhanced Precipitation of Gibbsite from Sodium Aluminate Solution by Adding Agglomerated Active Al(OH)3 Seeden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/met13020193-
dc.identifier.scopus85149251459-
local.contributor.employeeShoppert, A., Department of Non-Ferrous Metals Metallurgy, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Laboratory of Advanced Technologies in Non-Ferrous and Ferrous Metals Raw Materials Processing, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeValeev, D., Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, 119991, Russian Federationen
local.contributor.employeeAlekseev, K., Department of Non-Ferrous Metals Metallurgy, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeLoginova, I., Department of Non-Ferrous Metals Metallurgy, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.issue2-
local.volume13-
dc.identifier.wos000940713600001-
local.contributor.departmentDepartment of Non-Ferrous Metals Metallurgy, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentLaboratory of Advanced Technologies in Non-Ferrous and Ferrous Metals Raw Materials Processing, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentLaboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, 119991, Russian Federationen
local.identifier.pure36031858-
local.description.order193-
local.identifier.eid2-s2.0-85149251459-
local.identifier.wosWOS:000940713600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85149251459.pdf8,38 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons