Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/127440
Title: | STATISTICAL CONVERGENCE IN A BICOMPLEX VALUED METRIC SPACE |
Authors: | Bera, Subhajit Tripathy, Binod Chandra |
Issue Date: | 2023 |
Citation: | Bera Subhajit. STATISTICAL CONVERGENCE IN A BICOMPLEX VALUED METRIC SPACE / Subhajit Bera, Binod Chandra Tripathy. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 49-63. |
Abstract: | In this paper, we study some basic properties of bicomplex numbers. We introduce two different types of partial order relations on bicomplex numbers, discuss bicomplex valued metric spaces with respect to two different partial orders, and compare them. We also define a hyperbolic valued metric space, the density of natural numbers, the statistical convergence, and the statistical Cauchy property of a sequence of bicomplex numbers and investigate some properties in a bicomplex metric space and prove that a bicomplex metric space is complete if and only if two complex metric spaces are complete. |
Keywords: | PARTIAL ORDER BICOMPLEX VALUED METRIC SPACE STATISTICAL CONVERGENCE |
URI: | http://elar.urfu.ru/handle/10995/127440 |
Access: | Creative Commons Attribution License |
License text: | https://creativecommons.org/licenses/by/4.0/ |
RSCI ID: | 54265304 |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2023.1.004 |
Origin: | Ural Mathematical Journal. 2023. Volume 9. № 1 |
Appears in Collections: | Ural Mathematical Journal |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
umj_2023_9_1_005.pdf | 158,58 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License