Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/127440
Title: STATISTICAL CONVERGENCE IN A BICOMPLEX VALUED METRIC SPACE
Authors: Bera, Subhajit
Tripathy, Binod Chandra
Issue Date: 2023
Citation: Bera Subhajit. STATISTICAL CONVERGENCE IN A BICOMPLEX VALUED METRIC SPACE / Subhajit Bera, Binod Chandra Tripathy. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 49-63.
Abstract: In this paper, we study some basic properties of bicomplex numbers. We introduce two different types of partial order relations on bicomplex numbers, discuss bicomplex valued metric spaces with respect to two different partial orders, and compare them. We also define a hyperbolic valued metric space, the density of natural numbers, the statistical convergence, and the statistical Cauchy property of a sequence of bicomplex numbers and investigate some properties in a bicomplex metric space and prove that a bicomplex metric space is complete if and only if two complex metric spaces are complete.
Keywords: PARTIAL ORDER
BICOMPLEX VALUED METRIC SPACE
STATISTICAL CONVERGENCE
URI: http://elar.urfu.ru/handle/10995/127440
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
RSCI ID: 54265304
ISSN: 2414-3952
DOI: 10.15826/umj.2023.1.004
Origin: Ural Mathematical Journal. 2023. Volume 9. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2023_9_1_005.pdf158,58 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons