Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118412
Название: Analog of the Hadamard Theorem and Related Extremal Problems on the Class of Analytic Functions
Авторы: Akopyan, R. R.
Дата публикации: 2021
Издатель: Pleiades journals
Библиографическое описание: Akopyan R. R. Analog of the Hadamard Theorem and Related Extremal Problems on the Class of Analytic Functions / R. R. Akopyan // Proceedings of the Steklov Institute of Mathematics. — 2021. — Vol. 315. — P. S13-S26.
Аннотация: We study several related extremal problems for analytic functions in a finitely connected domain G with rectifiable Jordan boundary Γ. A sharp inequality is established between values of a function analytic in G and weighted means of its boundary values on two measurable subsets (Formula presented.) of the boundary: (Formula presented.) The inequality is an analog of Hadamard’s three-circle theorem and the Nevanlinna brothers’ two-constant theorem.In the case of a doubly connected domain G and (Formula presented.), we study the cases where the inequality provides the value of the modulus of continuity for a functional of analytic extension of a function from the part (Formula presented.) of the boundary to a given point of the domain. In these cases, the corresponding problem of optimal recovery of a function from its approximate boundary values on (Formula presented.) and the problem of the best approximation of a functional by bounded linear functionals are solved.The case of a simply connected domain G has been completely investigated previously. © 2021, Pleiades Publishing, Ltd.
Ключевые слова: ANALYTIC FUNCTIONS
BEST APPROXIMATION OF AN UNBOUNDED FUNCTIONAL BY BOUNDED FUNCTIONALS
HARMONIC MEASURE
OPTIMAL RECOVERY OF A FUNCTIONAL
URI: http://elar.urfu.ru/handle/10995/118412
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор РИНЦ: 48128544
Идентификатор SCOPUS: 85123105053
Идентификатор WOS: 000745120100002
Идентификатор PURE: 29475537
ISSN: 815438
DOI: 10.1134/S008154382106002X
Сведения о поддержке: Russian Foundation for Basic Research, РФФИ: 18-01-00336
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University) and is a part of the research carried out at the Ural Mathematical Center.
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85123105053.pdf287,67 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.