Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/118201
Title: | Hopping conduction mechanism and impedance spectroscopy analyses of La0.70Sr0.25Na0.05Mn0.70Ti0.30O3 ceramic |
Authors: | Raddaoui, Z. El Kossi, S. Brahem, R. Bajahzar, A. Trukhanov, A. V. Kozlovskiy, A. L. Zdorovets, M. V. Dhahri, J. Belmabrouk, H. |
Issue Date: | 2021 |
Publisher: | Springer |
Citation: | Hopping conduction mechanism and impedance spectroscopy analyses of La0.70Sr0.25Na0.05Mn0.70Ti0.30O3 ceramic / Z. Raddaoui, S. El Kossi, R. Brahem et al. // Journal of Materials Science: Materials in Electronics. — 2021. |
Abstract: | The perovskite sample La0.7Sr0.25Na0.05Mn0.7Ti0.3O3 (LSNM0.70T0.30) was produced via a solid-state route process. The frequency dependence of electrical conduction plot established that according to the Jonscher law. The electrical conduction process was based on both theoretical conduction models assigned to the non-overlapping small polaron tunneling model at low temperatures and correlated barrier hopping mechanism at high temperatures. Detailed investigation of impedance data revealed a non-Debye-type relaxation occurring in the polycrystalline. In addition, the dielectric response confirmed the dominance of the Maxwell–Wagner model and Koop’s phenomenological theory effect in conduction phenomenon. The values of permittivity is high for LSNM0.70T0.30 were observed. These values make this composition interesting for microelectric applications. In the thermal study, the relaxation processes observed by electrical conductivity, impedance, and modulus are associated with singly and doubly ionized oxygen vacancies for the lower and higher temperature, respectively. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
Keywords: | LANTHANUM COMPOUNDS MANGANESE COMPOUNDS PEROVSKITE STRONTIUM COMPOUNDS CORRELATED BARRIER HOPPING DIELECTRIC RESPONSE ELECTRICAL CONDUCTION ELECTRICAL CONDUCTIVITY FREQUENCY DEPENDENCE IMPEDANCE SPECTROSCOPY PHENOMENOLOGICAL THEORY SOLID-STATE ROUTES SODIUM COMPOUNDS |
URI: | http://elar.urfu.ru/handle/10995/118201 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 46080817 |
SCOPUS ID: | 85106523893 |
WOS ID: | 000654159600003 |
PURE ID: | 22837843 |
ISSN: | 9574522 |
DOI: | 10.1007/s10854-021-06160-6 |
Sponsorship: | Majmaah University, MU: R-2021-121 The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-2021-121. |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85106523893.pdf | 943,08 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.