Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/118147
Title: Features of selecting boundary conditions when describing flows of stratified fluids
Authors: Burmasheva, N. V.
Larina, E. A.
Prosviryakov, E. Y.
Issue Date: 2021
Publisher: Elsevier B.V.
Citation: Burmasheva N. V. Features of selecting boundary conditions when describing flows of stratified fluids / N. V. Burmasheva, E. A. Larina, E. Y. Prosviryakov // Procedia Structural Integrity. — 2021. — Vol. 40. — Iss. C. — P. 75-81.
Abstract: The article discusses the selection of boundary conditions at the boundary between adjacent layers in a stratified viscous incompressible fluid. It is shown that the "continuity condition + differentiability condition" pair traditionally used in many disciplines gives physically unjustified properties of the resulting exact solution for the velocity field. Although the condition for the differentiability of velocities is close in mathematical form to the stress continuity condition (by virtue of Newton's law), in terms of physics, taking these conditions into account gives fundamentally different properties of the exact solution of the Navier-Stokes system of equations. It is shown that the consideration of the "the velocity field continuity condition + the stress field continuity condition" pair is more adequate to the physics of the process, which is consistent with the hypothesis of continuity. © 2021 Elsevier B.V.. All rights reserved.
Keywords: BOUNDARY CONDITIONS
EXACT SOLUTION
ISOBARIC ISOTHERMAL FLOW
NAVIER-STOKES EQUATIONS
SHEAR FLOW
STRATIFIED FLUID
VISCOUS INCOMPRESSIBLE TWO-LAYER FLUID
URI: http://elar.urfu.ru/handle/10995/118147
Access: info:eu-repo/semantics/openAccess
Conference name: 15th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures, MRDMS 2021
Conference date: 20 December 2021 through 24 December 2021
SCOPUS ID: 85132158795
PURE ID: 30457435
ISSN: 24523216
DOI: 10.1016/j.prostr.2022.04.009
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85132158795.pdf527,45 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.