Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118146
Название: Features of Structure Formation in an Al–Fe–Mn Alloy upon Crystallization with Various Cooling Rates
Авторы: Loginova, I. S.
Sazerat, M. V.
Popov, N. A.
Pozdniakov, A. V.
Solonin, A. N.
Дата публикации: 2021
Издатель: Pleiades journals
Библиографическое описание: Features of Structure Formation in an Al–Fe–Mn Alloy upon Crystallization with Various Cooling Rates / I. S. Loginova, M. V. Sazerat, N. A. Popov et al. // Russian Journal of Non-Ferrous Metals. — 2021. — Vol. 62. — Iss. 1. — P. 72-81.
Аннотация: Abstract: Specific features of the microstructure formation of an Al–2.5% Fe–1.5% Mn alloy owing to the cooling rate during casting and during laser melting are studied in this work. An analysis of the microstructure in the molten state shows that, with an increase in the cooling rate during crystallization from 0.5 to 940 K/s, the primary crystallization of the Al6(Mn,Fe) phase is almost completely suppressed and the volume of the nonequilibrium eutectic increases to 43%. The microstructures of the Al–2.5% Fe–1.5% Mn alloy after laser melting are characterized by the presence of crystals of an aluminum matrix of a dendritic type with an average cell size of 0.56 μm, surrounded by an iron-manganese phase of eutectic origin with an average plate size of 0.28 μm. The primary crystallization of the Al6(Mn,Fe) phase is completely suppressed. The formation of such a microstructure occurs at cooling rates of 1.1 × 104–2.5 × 104 K/s, which corresponds to the cooling rates implemented in additive technologies. At the boundary between the track and the base metal and between the pulses, regions were revealed consisting of primary crystals of the Al6(Mn,Fe) phase formed by the epitaxial growth mechanism. The size of the primary crystals and the width of this zone depends on the size of the eutectic plates and the size of the dendritic cell located in the epitaxial layer. After laser melting, the Al–2.5% Fe–1.5% Mn alloy has a high hardness at room temperature (93 HV) and, after heating up to 300°C, it has a high thermal stability (85 HV). The calculated yield strength of the Al–2.5% Fe–1.5% Mn alloy after laser melting is 227 MPa. The combination of its ultrafine microstructure, high processibility during laser melting, hardness at room and elevated temperatures, and high calculated yield strength make the Al–2.5% Fe–1.5% Mn alloy a promising alloy for use in additive technologies. © 2021, Allerton Press, Inc.
Ключевые слова: ADDITIVE MANUFACTURING
AL–FE–MN
COOLING RATE
HARDNESS
LASER MELTING
MICROSTRUCTURE
ADDITIVES
COOLING
CRYSTALS
EPITAXIAL GROWTH
EUTECTICS
HARDNESS
MELTING
MICROSTRUCTURE
PLATES (STRUCTURAL COMPONENTS)
YIELD STRESS
ADDITIVE TECHNOLOGY
ELEVATED TEMPERATURE
HIGH THERMAL STABILITY
MICROSTRUCTURE FORMATION
NON-EQUILIBRIUM EUTECTIC
PRIMARY CRYSTALLIZATION
STRUCTURE FORMATIONS
ULTRA-FINE MICROSTRUCTURES
MANGANESE ALLOYS
ADDITIVE
ALLOY
ALUMINUM
COOLING
CRYSTALLIZATION
IRON
LASER METHOD
MANGANESE
MELTING
URI: http://elar.urfu.ru/handle/10995/118146
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор РИНЦ: 46749339
Идентификатор SCOPUS: 85102197292
Идентификатор WOS: 000625939600008
Идентификатор PURE: 21017311
ISSN: 10678212
DOI: 10.3103/S1067821221010119
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85102197292.pdf6,62 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.