Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118068
Название: Possibilities of information technologies application to production problems solving by math modeling methods
Авторы: Gruzman, V. M.
Дата публикации: 2020
Издатель: IOP Publishing Ltd
Библиографическое описание: Gruzman V. M. Possibilities of information technologies application to production problems solving by math modeling methods / V. M. Gruzman // IOP Conference Series: Materials Science and Engineering. — 2020. — Vol. 966. — Iss. 1. — 12130.
Аннотация: Nowadays there exist a great number of program packages, allowing solution of common tasks of automation of the math modeling. Industries with their specific features may demand particular approaches to solving their problems. Modern information technologies allow development of a special application software for processing a specific task in such cases. The article suggests a description of a general architecture concept of the application software, which can automate tasks of the math modeling to solve different issues related to the industrial production. It describes a detailed algorithm of data processing in such a product using the capabilities of the information technologies. The capabilities of such an application software are shown in the example of preliminary draft model design of large pouring ladle stopper durability. The results that have been achieved with the help of the extemporized model allow making a conclusion that a model that has been built by the same techniques based on an annual scope of collected information will make it possible to get reliable answers for the tasks of production management. © Published under licence by IOP Publishing Ltd.
URI: http://elar.urfu.ru/handle/10995/118068
Условия доступа: info:eu-repo/semantics/openAccess
Конференция/семинар: 15th International Conference on Industrial Manufacturing and Metallurgy, ICIMM 2020
Дата конференции/семинара: 18 June 2020 through 19 June 2020
Идентификатор SCOPUS: 85097102265
Идентификатор PURE: 20233054
ISSN: 17578981
DOI: 10.1088/1757-899X/966/1/012130
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85097102265.pdf175,36 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.