Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118019
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMaslova, N. V.en
dc.contributor.authorIlenko, K. A.en
dc.date.accessioned2022-10-19T05:21:08Z-
dc.date.available2022-10-19T05:21:08Z-
dc.date.issued2022-
dc.identifier.citationMaslova N. V. ON THE COINCIDENCE OF GRUENBERG-KEGEL GRAPHS OF AN ALMOST SIMPLE GROUP AND A NONSOLVABLE FROBENIUS GROUP / N. V. Maslova, K. A. Ilenko // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2022. — Vol. 28. — Iss. 2. — P. 168-175.en
dc.identifier.issn1344889-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85134834806&doi=10.21538%2f0134-4889-2022-28-2-168-175&partnerID=40&md5=9a8c5674ca2aedbd257aee8cbfcba76blink
dc.identifier.urihttp://elar.urfu.ru/handle/10995/118019-
dc.description.abstractLet G be a finite group. Its spectrum ω(G) is the set of all element orders of G. The prime spectrum π(G) is the set of all prime divisors of the order of G. The Gruenberg-Kegel graph (or the prime graph) Γ(G) is a simple graph whose vertex set is π(G), and two distinct vertices p and q are adjacent in Γ(G) if and only if pq ∈ ω(G). The structural Gruenberg-Kegel theorem implies that the class of finite groups with disconnected Gruenberg-Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg-Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to PSL2(q) for some q. © Trudy Instituta Matematiki i Mekhaniki UrO RAN.All rights reserved.en
dc.description.sponsorshipRussian Science Foundation, RSF: 19-71-10067en
dc.description.sponsorshipReceived January 28, 2022 Revised April 30, 2022 Accepted May 5, 2022 Funding Agency: This work was supported by the Russian Science Foundation (project no. 19-71-10067).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-71-10067en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectALMOST SIMPLE GROUPen
dc.subjectFINITE GROUPen
dc.subjectGRUENBERG-KEGEL GRAPH (PRIME GRAPH)en
dc.subjectNONSOLVABLE FROBENIUS GROUPen
dc.titleON THE COINCIDENCE OF GRUENBERG-KEGEL GRAPHS OF AN ALMOST SIMPLE GROUP AND A NONSOLVABLE FROBENIUS GROUPen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi48585957-
dc.identifier.doi10.21538/0134-4889-2022-28-2-168-175-
dc.identifier.scopus85134834806-
local.contributor.employeeMaslova, N.V., Krasovskii Inst. of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federationen
local.contributor.employeeIlenko, K.A., Krasovskii Inst. of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federationen
local.description.firstpage168-
local.description.lastpage175-
local.issue2-
local.volume28-
dc.identifier.wos000905209900013-
local.contributor.departmentKrasovskii Inst. of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federationen
local.contributor.departmentUral Federal University, Yekaterinburg, 620000, Russian Federationen
local.identifier.pure30398960-
local.identifier.eid2-s2.0-85134834806-
local.fund.rsf19-71-10067-
local.identifier.wosWOS:000905209900013-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85134834806.pdf96,71 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.