Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/118019
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Maslova, N. V. | en |
dc.contributor.author | Ilenko, K. A. | en |
dc.date.accessioned | 2022-10-19T05:21:08Z | - |
dc.date.available | 2022-10-19T05:21:08Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Maslova N. V. ON THE COINCIDENCE OF GRUENBERG-KEGEL GRAPHS OF AN ALMOST SIMPLE GROUP AND A NONSOLVABLE FROBENIUS GROUP / N. V. Maslova, K. A. Ilenko // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2022. — Vol. 28. — Iss. 2. — P. 168-175. | en |
dc.identifier.issn | 1344889 | - |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134834806&doi=10.21538%2f0134-4889-2022-28-2-168-175&partnerID=40&md5=9a8c5674ca2aedbd257aee8cbfcba76b | link |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/118019 | - |
dc.description.abstract | Let G be a finite group. Its spectrum ω(G) is the set of all element orders of G. The prime spectrum π(G) is the set of all prime divisors of the order of G. The Gruenberg-Kegel graph (or the prime graph) Γ(G) is a simple graph whose vertex set is π(G), and two distinct vertices p and q are adjacent in Γ(G) if and only if pq ∈ ω(G). The structural Gruenberg-Kegel theorem implies that the class of finite groups with disconnected Gruenberg-Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg-Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to PSL2(q) for some q. © Trudy Instituta Matematiki i Mekhaniki UrO RAN.All rights reserved. | en |
dc.description.sponsorship | Russian Science Foundation, RSF: 19-71-10067 | en |
dc.description.sponsorship | Received January 28, 2022 Revised April 30, 2022 Accepted May 5, 2022 Funding Agency: This work was supported by the Russian Science Foundation (project no. 19-71-10067). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en |
dc.relation | info:eu-repo/grantAgreement/RSF//19-71-10067 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | ALMOST SIMPLE GROUP | en |
dc.subject | FINITE GROUP | en |
dc.subject | GRUENBERG-KEGEL GRAPH (PRIME GRAPH) | en |
dc.subject | NONSOLVABLE FROBENIUS GROUP | en |
dc.title | ON THE COINCIDENCE OF GRUENBERG-KEGEL GRAPHS OF AN ALMOST SIMPLE GROUP AND A NONSOLVABLE FROBENIUS GROUP | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 48585957 | - |
dc.identifier.doi | 10.21538/0134-4889-2022-28-2-168-175 | - |
dc.identifier.scopus | 85134834806 | - |
local.contributor.employee | Maslova, N.V., Krasovskii Inst. of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federation | en |
local.contributor.employee | Ilenko, K.A., Krasovskii Inst. of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation | en |
local.description.firstpage | 168 | - |
local.description.lastpage | 175 | - |
local.issue | 2 | - |
local.volume | 28 | - |
dc.identifier.wos | 000905209900013 | - |
local.contributor.department | Krasovskii Inst. of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation | en |
local.contributor.department | Ural Federal University, Yekaterinburg, 620000, Russian Federation | en |
local.identifier.pure | 30398960 | - |
local.identifier.eid | 2-s2.0-85134834806 | - |
local.fund.rsf | 19-71-10067 | - |
local.identifier.wos | WOS:000905209900013 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85134834806.pdf | 96,71 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.