On some Frobenius groups with the same prime graph as the almost simple group PGL(2,49)

Ali Mahmoudifar
Department of Mathematics, Tehran-North Branch, Islamic Azad University, Tehran, Iran
e-mail: alimahmoudifar@gmail.com

Abstract

The prime graph of a finite group G is denoted by $\Gamma(G)$ whose vertex set is $\pi(G)$ and two distinct primes p and q are adjacent in $\Gamma(G)$, whenever G contains an element with order $p q$. We say that G is unrecognizable by prime graph if there is a finite group H with $\Gamma(H)=\Gamma(G)$, in while $H \not \approx G$. In this paper, we consider finite groups with the same prime graph as the almost simple group PGL $(2,49)$. Moreover, we construct some Frobenius groups whose their prime graph coincide with $\Gamma(\operatorname{PGL}(2,49))$, in particular, we get that $\operatorname{PGL}(2,49)$ is unrecognizable by prime graph.

2000 AMS Subject Classification: 20D05, 20D60, 20D08.
Keywords : almost simple group, prime graph, Frobenius group, element order. pepole

1 Introduction

Let \mathbb{N} denotes the set of natural numbers. If $n \in \mathbb{N}$, then we denote by $\pi(n)$, the set of all prime divisors of n. Let G be a finite group. The set $\pi(|G|)$ is denoted by $\pi(G)$. Also the set of element orders of G is denoted by $\pi_{e}(G)$. We denote by $\mu(S)$, the maximal numbers of $\pi_{e}(G)$ under the divisibility relation. The prime graph of G is a graph whose vertex set is $\pi(G)$ and two distinct primes p and q are joined by an edge (and we write $p \sim q$), whenever G contains an element of order $p q$. The prime graph of G is denoted by $\Gamma(G)$. A finite group G is called unrecognizable by prime graph if for every finite group H such that $\Gamma(H)=\Gamma(G)$, however $H \not \approx G$.

In [10, it is proved that if p is a prime number which is not a Mersenne or Fermat prime and $p \neq 11,19$ and $\Gamma(G)=\Gamma(\operatorname{PGL}(2, p))$, then G has a unique nonabelian composition factor which
is isomorphic to $\operatorname{PSL}(2, p)$ and if $p=13$, then G has a unique nonabelian composition factor which is isomorphic to $\operatorname{PSL}(2,13)$ or $\operatorname{PSL}(2,27)$. In [3], it is proved that if $q=p^{\alpha}$, where p is a prime and $\alpha>1$, then $\operatorname{PGL}(2, q)$ is uniquely determined by its element orders. Also in [1], it is proved that if $q=p^{\alpha}$, where p is an odd prime and α is an odd natural number, then $\operatorname{PGL}(2, q)$ is uniquely determined by its prime graph. However, in this paper as the main result we prove that the almost simple group $\operatorname{PGL}(2,49)$ is unrecognizable by prime graph. Also, finally we put a question about the existence of Frobenius groups with the same prime graph as the almost simple groups PGL $(2, q)$.

2 Preliminary Results

Lemma 2.1. ([17]) Let G be a finite group and $N \unlhd G$ such that G / N is a Frobenius group with kernel F and cyclic complement C. If $(|F|,|N|)=1$ and F is not contained in $N C_{G}(N) / N$, then $p|C| \in \pi_{e}(G)$ for some prime divisor p of $|N|$.

Lemma 2.2. ([8]) Let G be a finite group and $|\pi(G)| \geq 3$. If there exist prime numbers r, s, $t \in \pi(G)$, such that $\{t r, t s, r s\} \cap \pi_{e}(G)=\emptyset$, then G is non-solvable.

Lemma 2.3. ([19, Theorem 18.6]) Let G be a nonsolvable Frobenius complement. Then G has a normal subgroup G_{0} with $\left|G: G_{0}\right|=1$ or 2 such that $G_{0}=\mathrm{SL}(2,5) \times M$ with M a Z-group of order prime to 2, 3 and 5.

Using [14, Theorem A], we have the following result:

Lemma 2.4. Let G be a finite group with $t(G) \geq 2$. Then one of the following holds:
(a) G is a Frobenius or 2-Frobenius group;
(b) there exists a nonabelian simple group S such that $S \leq \bar{G}:=G / N \leq A u t(S)$ for some nilpotent normal subgroup N of G.

Lemma 2.5. ([20]) Let $G=L_{n}^{\varepsilon}(q), q=p^{m}$, be a simple group which acts absolutely irreducibly on a vector space W over a field of characteristic p. Denote $H=W \lambda G$. If $n=2$ and q is odd then $2 p \in \pi_{e}(H)$.

3 Main Results

Lemma 3.1. There are infinitely many finite Frobenius group G such that $\Gamma(G)=\Gamma(\operatorname{PGL}(2,49))$.

Proof. Let F be a finite field of characteristic 7. Also let there are some elements α and β included in F such that $\alpha^{2}=-1$ and $\beta^{2}=5$. We know that such a finite filed exists and moreover there are infinitely many filed with these properties.

Now we construct some linear groups as follow:

$$
\begin{gathered}
C:=\left\langle\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & \alpha & 0 \\
\alpha & \frac{\beta+1}{2} & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\rangle, \\
K:=\left\langle\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)\right\rangle .
\end{gathered}
$$

By the above definition, $C \cong\left\langle x, y, z \mid x^{3}=y^{5}=z^{2}=1, x^{z}=z, y^{z}=y,(x y)^{2}=z\right\rangle$. This implies that $C \cong \mathrm{SL}(2,5)$. Also we have $K \cong F \oplus F$, is a direct sum of additive group F by itself. This means K is isomorphic to a vector space of dimension 2 over F and so $|K|=|F|^{2}$. It is obvious that C belongs to the normalizer of K in $\mathrm{GL}(3, F)$.

Now we define $G:=K \rtimes C$. Since K is an elementary abelian 7-group, it is easy to prove that C acts fixed point freely on K by conjugation. Hence G is a Frobenius group with kernel K and complement C. This implies that in the prime graph of $G, 7$ is an isolated vertex. Also by $\Gamma(\operatorname{SL}(2,5))$, we get that 2 is adjacent to 3 and 5 and there is no edge between 3 and 5 in $\Gamma(G)$. Therefore, $\Gamma(G)$ coincides to $\Gamma(\operatorname{PGL}(2,49))$, which completes the proof.

Lemma 3.2. Each following group G is an almost simple group related to the simple group S. Moreover, G has a prime graph which coincide with the prime graph of the almost simple group $\operatorname{PGL}(2,49):$
(1) $G=S_{7}$ and $S=A_{7}$.
(2) $G=U_{4}(3) \cdot 2$ and $S=U_{4}(3)$.
(3) $G=U_{3}(5)$ or $G=U_{3}(5) \cdot 2$ and $S=U_{3}(5)$.

Proof. Using [4], it is straightforward.
Theorem 3.3. Let G be a finite group with the prime graph as same as the prime graph of PGL $(2,49)$. Then G is isomorphic to one of the following groups:
(1) A Frobenius group $K \rtimes C$, such that K is a 7 -group and C contains a subgroup C_{0} whose index in C is at most 2 and C_{0} is isomorphic to $\operatorname{SL}(2,5)$.
(2) On of the almost simple group: $S_{7}, U_{4}(3) \cdot 2, U_{3}(5) \cdot 2$ or $\operatorname{PGL}(2,49)$.
(3) The simple group: $U_{3}(5)$.

In particular, $\mathrm{PGL}(2,49)$ is unrecognizable by prime graph.
Proof. By [18, Lemma 7], it follows that $\mu(\operatorname{PGL}(2,49))=\{7,48,50\}$. Hence, the connected components of the prime graph of $\operatorname{PGL}(2,49)$ are exactly $\{7\}$ and $\{2,3,5\}$. Also by $\mu(\operatorname{PGL}(2,49))$, there is no edge between 3 and 5 in $\Gamma(\operatorname{PGL}(2,49))$. Now since $\Gamma(G)=\Gamma(\operatorname{PGL}(2,49))$, we deduce that these relations hold in the prime graph of G.

First we claim that G is not solvable. On the contrary, let G be a solvable group. So there is a Hall $\{3,5,7\}$-subgroup in G, say H. On the other hand $\{3,5,7\}$ is an independent subset of $\Gamma(G)$, which is a contradiction by Lemma 2.2. Therefore, G is not solvable and so by Lemma [2.4, either G is a Frobenius group or there is a nonabelian simple group S such that $S \leq \bar{G}:=G / \operatorname{Fit}(G) \leq \operatorname{Aut}(S)$.

Let G be a Frobenius group with kernel K and complement C. By Lemma 2.3, we know that K is nilpotent and $\pi(C)$ is a connected component of the prime graph of G. Hence we conclude that $\pi(K)=\{7\}$ and $\pi(C)=\{2,3,5\}$, since 7 is an isolated vertex in $\Gamma(G)$. Hence if C is solvable, then G is a solvable which is a contradiction by the above argument.

Thus we suppose that C is non-solvable. Then by Lemma [2.3, the complement C has a normal subgroup C_{0} with index at most 2 which is isomorphic to $\operatorname{SL}(2,5) \times M$, where $\pi(M) \cap$ $\{2,3,5\}=\emptyset$. On the other hand, by the previous argument, we know that $\pi(C)=\{2,3,5\}$. This implies that $M=1$ and so $C_{0} \cong \mathrm{SL}(2,5)$. Also by Lemma 3.1, we know that this such Frobenius complement exists. Hence G can be isomorphic to a Frobenius group K : C, where K is a 7 -subgroup and C contains a subgroup isomorphic to $\mathrm{SL}(2,5)$ whose index is at most 2 , Therefore if G is a Frobenius group, then we get Case (1).

Now we assume that G is neither Frobenius nor 2-Frobenius group. Hence by Lemma 2.4, there exists a nonabelian simple group S such that:

$$
S \leq \bar{G}:=G / K \leq \operatorname{Aut}(S)
$$

in which K is the Fitting subgroup of G. Since $\{2,7\}$ is an independent subset of $\Gamma(G)$, by Lemma 2.4, we conclude that $7 \in \pi(S)$ and $7 \notin \pi(K) \cup \pi(\bar{G} / S)$. Also we know that $\pi(S) \subseteq \pi(G)$. Since $\pi(G)=\{2,3,5,7\}$, so by [13, Table 8], we get that S is isomorphic to $A_{7}, A_{8}, A_{9}, A_{10}$, $S_{6}(2), O_{8}^{+}(2), L_{3}\left(2^{2}\right), L_{2}\left(2^{3}\right), U_{3}(3), U_{4}(3), U_{3}(5), L_{2}(7), S_{4}(7), L_{2}\left(7^{2}\right)$ or J_{2}. Now we consider each possibility for the simple group S.

Let $S \cong L_{2}(7)$. Then $5 \in \pi(K)$, since $5 \notin(\pi(S) \cup \pi(\bar{G} / S))$. On the other hand S contains a $\{3,7\}$-subgroup H. Hence G has a subgroup isomorphic to $K_{5}: H$ where K_{5} is 5 -group. On the other hand $K_{5}: H$ is solvable and so there is an edge between to prime numbers in $\Gamma\left(K_{5}: H\right)$, which is impossible since $\Gamma\left(K_{5}: H\right)$ is a subgraph of $\Gamma(G)$. Thus $S \neq L_{2}(7)$.

Let $S \cong L_{2}\left(2^{3}\right)$. In this case, $5 \in \pi(K)$. Also we know that S contains a Frobenius group isomorphic to $8: 7$. Hence by Lemma 2.1, we get that G has an element order $5 \cdot 7$, which is a contradiction.

Let $S \cong A_{8}, A_{9}$ or A_{10}. Thus S consists an element of order $3 \cdot 5$, which contradicts to the prime graph of G.

Let $S \cong J_{2}, O_{8}^{+}(2)$ or $S_{6}(2)$. In this case S contains an element of order 15 , which is a contradiction.

By Lemma 3.2, the finite group S can be isomorphic to each simple group $A_{7}, U_{3}(3), U_{4}(3)$ and $U_{3}(5)$.

Let S be isomorphic to $\mathrm{PSL}_{2}(49)$. Hence $\mathrm{PSL}_{2}(49) \leq \bar{G} \leq \operatorname{Aut}\left(\mathrm{PSL}_{2}(49)\right)$.
Let $\pi(K)$ contains a prime r such that $r \neq 7$. Since K is nilpotent, we may assume that K is a vector space over a field with r elements (analogous to the proof of Lemma ??). Hence the prime graph of the semidirect product $K \rtimes \mathrm{PSL}_{2}(49)$ is a subgraph of $\Gamma(G)$. Let B be a Sylow 7 -subgroup of PSL_{2} (49). We know that B is not cyclic. On the other hand $K \rtimes B$ is a Frobenius group such that $\pi(K \rtimes B)=\{r, 7\}$. Hence B should be cyclic which is a contradiction. This implies that $K=1$, since $7 \notin \pi(K)$.

We know that $\operatorname{Aut}\left(\mathrm{PSL}_{2}(49)\right) \cong Z_{2} \times Z_{2}$. Since in the prime graph of $\mathrm{PSL}_{2}(49)$ there is not any edge between 7 and 2 , we get that $G \neq \mathrm{PSL}_{2}(49)$. Also if $G=\mathrm{PSL}_{2}(49):\langle\theta\rangle$, where θ is a field automorphism, then we get that 2 and 7 are adjacent in G, which is a contradiction. If $G=\mathrm{PSL}_{2}(49):\langle\gamma\rangle$, where γ is a diagonal-field automorphism, then we get that G does not contain any element with order $2 \cdot 7$ (see [3, Lemm 12]), which is contradiction, since in $\Gamma(G)$, $2 \sim 7$. This argument shows that $G \cong \mathrm{PSL}_{2}(49)$, which completes the proof.

Problem 3.4. Let $G=P G L(2, q)$ be an almost simple group related to the simple group $\operatorname{PSL}(2, q)$. Find all Frobenius group H such that $\Gamma(H)=\Gamma(G)$.

References

[1] Z. Akhlaghi, M. Khatami and B. Khosravi, Characterization by prime graph of PGL $\left(2, p^{k}\right)$ where p and k are odd, International Journal of Algebra and Computation 20 (7) (2010) 847-873.
[2] A. A. Buturlakin, Spectra of Finite Symplectic and Orthogonal Groups, Siberian Advances in Mathematics, 21 (3) (2011) 176-210.
[3] G. Y. Chen, V. D. Mazurov, W. J. Shi, A. V. Vasil'ev and A. Kh. Zhurtov, Recognition of the finite almost simple groups $P G L_{2}(q)$ by their spectrum, J. Group Theory 10(1) (2007) 71-85.
[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups (Oxford University Press, Oxford, 1985).
[5] M.A. Grechkoseeva, On element orders in covers of finite simple classical groups, j. Algebra, 339 (2011) 304-319.
[6] D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).
[7] M. Hagie, The prime graph of a sporadic simple group, Comm. Algebra 31(9) (2003) 44054424.
[8] G. Higman, Finite groups in which every element has prime power order, J. London Math. Soc. 32 (1957) 335-342.
[9] M. Khatami, B. Khosravi and Z. Akhlaghi, NCF-distinguishability by prime graph of $P G L(2, p)$, where p is a prime, Rocky Mountain J. Math., to appear.
[10] B. Khosravi, n-Recognition by prime graph of the simple group $\operatorname{PSL}(2, q)$, J. Algebra Appl. 7(6) (2008) 735-748.
[11] B. Khosravi, B. Khosravi and B. Khosravi, 2-Recognizability of $P S L\left(2, p^{2}\right)$ by the prime graph, Siberian Math. J. 49(4) (2008) 749.757.
[12] B. Khosravi, B. Khosravi and B. Khosravi, On the prime graph of $\operatorname{PSL}(2, p)$ where $p>3$ is a prime number, Acta. Math. Hungarica 116(4) (2007) 295-307.
[13] R. Kogani-Moghadam and A. R. Moghaddamfar, Groups with the same order and degree pattern, Sci. China Math., 55 (4) (2012), 701-720.
[14] A. S. Kondrat'ev, Prime graph components of finite simple groups, Math. USSR-SB. 67(1) (1990) 235-247.
[15] A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups $A_{n}^{+}(p)$ and $A_{n}^{-}(p)$, J. Algebra Appl. 14(1) (2015) (12 pages).
[16] A. Mahmoudifar and B. Khosravi, On the characterization of alternating groups by order and prime graph, Sib. Math. J. 56(1) (2015) 125-131.
[17] V. D. Mazurov, Characterizations of finite groups by sets of their element orders, Algebra Logic 36(1) (1997) 23-32.
[18] A. R. Moghaddamfar and W. J. Shi, The number of finite groups whose element orders is given., Beitrage Algebra Geom., 47(2) (2006) 463-479.
[19] D. S. Passman, Permutation groups, W. A. Bengamin, New York, 1968.
[20] A. V. Zavarnitsine, Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups, Sib. Electron. Math. Rep. 8 (2011) 333-340.

