Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117976
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorIvanov, A. A.en
dc.contributor.authorNizovtseva, I. G.en
dc.contributor.authorLippmann, S.en
dc.contributor.authorAlexandrova, I. V.en
dc.contributor.authorMakoveeva, E. V.en
dc.date.accessioned2022-10-19T05:20:55Z-
dc.date.available2022-10-19T05:20:55Z-
dc.date.issued2022-
dc.identifier.citationEvolution of a Polydisperse Ensemble of Spherical Particles in a Metastable Medium with Allowance for Heat and Mass Exchange with the Environment / D. V. Alexandrov, A. A. Ivanov, I. G. Nizovtseva et al. // Crystals. — 2022. — Vol. 12. — Iss. 7. — 949.en
dc.identifier.issn20734352-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133842979&doi=10.3390%2fcryst12070949&partnerID=40&md5=79fdbabb5101b31151484e167dcb3e02link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117976-
dc.description.abstractMotivated by a wide range of applications in various fields of physics and materials science, we consider a generalized approach to the evolution of a polydisperse ensemble of spherical particles in metastable media. An integrodifferential system of governing equations, consisting of a kinetic equation for the particle-size distribution function (Fokker–Planck type equation) and a balance equation for the temperature (concentration) of a metastable medium, is formulated. The kinetic equation takes into account fluctuations in the growth/reduction rates of individual particles, the velocity of particles in a spatial direction, the withdrawal of particles of a given size from the metastable medium, and their source/sink term. The heat (mass) balance equation takes into account the growth/reduction of particles in a metastable system as well as heat (mass) exchange with the environment. A generalized system of equations describes various physical and chemical processes of phase transformations, such as the growth and dissolution of crystals, the evaporation of droplets, the boiling of liquids and the combustion of a polydisperse fuel. The ways of analytical solution of the formulated integrodifferential system of equations based on the saddle-point technique and the separation of variables method are considered. The theory can be applied when describing the evolution of an ensemble of particles at the initial and intermediate stages of phase transformation when the distances between the particles are large enough, and interactions between them can be neglected. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipRussian Foundation for Basic Research, РФФИ: 20-08-00199; Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0057en
dc.description.sponsorshipFunding: This paper comprises two parts of research studies, including (i) the model generalization and discussion of governing equations, analytical solutions, analysis of the results obtained, and (ii) checking the mathematics, numerical calculations, visualization, and discussion of the functions obtained. Two parts of this review article were supported by two financial sources. The first part was supported by the Russian Foundation for Basic Research (grant no. 20-08-00199). At the same time, the authors are grateful to the Ministry of Science and Higher Education of the Russian Federation (grant no. FEUZ-2020-0057) for the support of the second part of the research studies.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceCrystalsen
dc.subjectGROWTH AND DISSOLUTION OF CRYSTALSen
dc.subjectMETASTABILITY REDUCTIONen
dc.subjectMETASTABLE MEDIAen
dc.subjectNUCLEATIONen
dc.subjectPARTICLE-SIZE DISTRIBUTIONen
dc.subjectPHASE TRANSFORMATIONSen
dc.subjectSPHERICAL PARTICLESen
dc.titleEvolution of a Polydisperse Ensemble of Spherical Particles in a Metastable Medium with Allowance for Heat and Mass Exchange with the Environmenten
dc.typeReviewen
dc.typeinfo:eu-repo/semantics/reviewen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/cryst12070949-
dc.identifier.scopus85133842979-
local.contributor.employeeAlexandrov, D.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeIvanov, A.A., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeNizovtseva, I.G., Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germanyen
local.contributor.employeeLippmann, S., Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germanyen
local.contributor.employeeAlexandrova, I.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeMakoveeva, E.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.issue7-
local.volume12-
dc.identifier.wos000832111900001-
local.contributor.departmentLaboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.departmentOtto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germanyen
local.identifier.pure30629346-
local.description.order949-
local.identifier.eid2-s2.0-85133842979-
local.fund.rffi20-08-00199-
local.identifier.wosWOS:000832111900001-
local.fund.feuzFEUZ-2020-0057-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85133842979.pdf566,23 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.