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Abstract: Motivated by a wide range of applications in various fields of physics and materials
science, we consider a generalized approach to the evolution of a polydisperse ensemble of spherical
particles in metastable media. An integrodifferential system of governing equations, consisting of
a kinetic equation for the particle-size distribution function (Fokker–Planck type equation) and a
balance equation for the temperature (concentration) of a metastable medium, is formulated. The
kinetic equation takes into account fluctuations in the growth/reduction rates of individual particles,
the velocity of particles in a spatial direction, the withdrawal of particles of a given size from the
metastable medium, and their source/sink term. The heat (mass) balance equation takes into account
the growth/reduction of particles in a metastable system as well as heat (mass) exchange with the
environment. A generalized system of equations describes various physical and chemical processes
of phase transformations, such as the growth and dissolution of crystals, the evaporation of droplets,
the boiling of liquids and the combustion of a polydisperse fuel. The ways of analytical solution
of the formulated integrodifferential system of equations based on the saddle-point technique and
the separation of variables method are considered. The theory can be applied when describing the
evolution of an ensemble of particles at the initial and intermediate stages of phase transformation
when the distances between the particles are large enough, and interactions between them can
be neglected.

Keywords: phase transformations; spherical particles; metastable media; nucleation; growth and
dissolution of crystals; particle-size distribution; metastability reduction

1. Introduction

The evolution of a polydisperse ensemble of particles interacting with the surrounding
medium underlies many technological processes and phenomena met in nature. Such an
ensemble consists of particles of different sizes capable of nucleation and evolution in a
metastable environment. Examples of such processes and phenomena are (i) nucleation
and growth of crystals in the metastable liquid or gas phase (e.g., industrial and laboratory
crystallizers and granulators used in the chemical, pharmaceutical and food industries) [1–9],
(ii) dissolution of crystals in an under-saturated liquid (e.g., transport and dissolution of
microcrystals of various drugs in blood vessels) [10–17], (iii) evaporation of liquid droplets
in metastable gas-vapour systems (e.g., evaporative cooling and spray drying devices) [18–22],
(iv) intense liquid boiling (e.g., in various household and industrial appliances) [23–26],
and (v) dispersed fuel combustion (e.g., combustion of particles in the furnaces with an
excess of an oxidising agent) [27–30].
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A common important feature of all of the above processes is the highly non-linear
relationship between the metastability degree of the medium (e.g., supercooling, superheat-
ing, supersaturation, undersaturation) and the evolution of crystal ensemble. For example,
the degree of metastability decreases with time, which affects the dynamics of particle
appearance/disappearance and the critical nucleus size of the new phase.

The evolution of particle ensemble in all the above-mentioned processes is based on
similar physical laws governing the dynamics of a particular process or phenomenon in
nature. Some unifying ideas about these processes can be found in Refs. [31–35]. In general,
the evolution of a polydisperse particle system is described using a kinetic equation for the
particle-size distribution function, which takes the form of the Fokker–Planck equation. In
general, this equation contains sources and sinks of particles, their motion in a continuous
medium as well as possible fluctuations of their growth/reduction rates. As this takes place,
the evolution of metastability degree of the medium is described by a balance equation of
heat or mass, which takes into account heat or mass transfer in space, release/absorption of
heat or mass due to growth or degradation of particles, as well as thermal-mass exchange
with the environment. Thus, the mathematical model of the process is an integrodifferential
system with appropriate boundary and initial conditions. This model is complicated by the
fact that particles grow/decay according to a predetermined law. Unfortunately, such a law
cannot be derived analytically since the evolution of each particle is described by a moving
curvilinear phase transformation boundary problem (Stefan problem) [36–38]. Summing
up the above, we note that there are no general methods for solving the problem concerning
the evolution of a system of particles (even of a simple spherical shape) in a metastable
medium. Therefore the solution to all such problems represents a unique study allowing
one to determine the dynamic characteristics of the system at each moment in time.

In this paper, we present the general theoretical approach based on kinetic and balance
equations that describe all of the aforementioned phenomena using the same model. In
addition, we discuss the main methods that can be used to solve this model containing heat
and mass exchange with the environment: the saddle-point and separation of variables
methods. These methods can be used to solve the problems under consideration with
both the first- and second-order kinetic equations. The theoretical methods considered
for solving non-linear models taking into account the heat and mass exchange with the
environment can be applied to describe the dynamics of a crystal ensemble in supercooled
melts and supersaturated solutions as well as the dissolution of a crystal system in under-
saturated liquids.

In the case of bulk crystallization, the number of solid-phase nuclei and their disper-
sion determines the final structure and properties of the crystallized material. Each crystal
grows from a single nucleus and therefore the number of nuclei arising in the melt/solution
determines the size of the resulting crystallization grain. To achieve high mechanical
and, in particular, strength properties it is desirable to obtain a fine grain structure. For
this purpose, it is necessary that as many crystallization centers as possible arise in the
supercooled melt (supersaturated solution) and the cooling rate must be selected in such a
way that the resulting crystallization centers have the opportunity to grow. The cooling
rate is directly determined by the heat exchange with the environment, the influence of
which on the bulk crystallization process is investigated in this paper. The description
of grain structure formation depending on the control parameters (e.g., cooling rate, su-
percooling, supersaturation) using modern theoretical methods is an important task that
has been actively investigated in recent years to determine the formation of nano- and
microstructures of alloys. One can distinguish several theoretical and practical aspects of
the theory in question, which bring it to the forefront of contemporary materials science
issues: (i) determination of the dispersivity of structure formation by theoretical methods,
which makes cheaper and faster the procedure itself, depending on the control parame-
ters; (ii) finding microstructure-property relations (for example, in high entropy alloys or
alloys-glassformers Al50Ni50, Cu50Zr50 and Ni50Zr50).
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2. The Generalised Model and Methods for Its Solution

Let us formulate a generalized model governing the evolution of a particulate as-
semblage of spherical particles in a metastable medium (e.g., liquid or gas phase). This
model comprises various aforementioned phase transformation phenomena (such as bulk
crystallization, dissolution, evaporation, boiling, and combustion) from the viewpoint of ki-
netic and balance equations for the particle-radius distribution function f and metastability
degree w, which is frequently replaced by system temperature T or concentration C.

2.1. The Model

So, let us write down the kinetic equation as [39–42]

∂ f
∂t

+
∂

∂x
(v f ) +

∂

∂r
(V f ) + h(r, x, t) f =

∂

∂r

(
D

∂ f
∂r

)
+ g(r, x, t), (1)

where r and t are the radial coordinate and time, x is the vector of spatial variables,
f = f (r, x, t), V = dr/dt is the growth/reduction rate of particles, v is the velocity of
particle motion, the function h(r, x, t) expresses the inverse of the mean residence time of
particles of size r in a metastable medium, D is the coefficient of mutual Brownian diffusion
of particles in space of their radii. Note that this coefficient may be defined by the “Einstein
relation” in r-space or may not have an Einstein-like form (see, among others, [40–43]).
Fluctuations in particle growth/reduction rates play a decisive role at the initial stage of
phase transformation (when metastability degree is large enough). With allowance for such
fluctuations, the nucleus radius r(t) represents a random quantity satisfying the following
stochastic Equation [44]

dr = V(r, t)dt +
√

2DdW, (2)

where W stands for the Wiener process. The function g(r, x, t) represents the source term
of particles entering the system. So, for example, this function has a form of Dirac delta
function when considering dissolution kinetics of particulate ensembles in channels [16,17].

A representative of heat/mass balance equation reads as

∂T
∂t

+
∂

∂x
(vT) = Q(x, t) + ηi

r∗∫
r∗

r2
(

V f − D
∂ f
∂r

)
dr, (3)

where T(x, t) is the temperature or concentration, Q is the heat or mass sink/source term,
r∗ and r∗ are the minimal and maximal sizes of particles existing in a metastable system (r∗
and r∗ are frequently replaced by 0 and ∞, respectively), and ηi is constant defined by the
physical meaning of the process under study. Let us especially note that Equation (3) can
include additional terms when studying more complex phase transformation phenomena.
For instance, dealing with combined bulk crystallization and polymerization, we include
the polymerization rate on the right-hand side of Equation (3), and add an equation for
polymerization degree (see, for details, [6,45]).

The metastability degree w = w(x, t), which describes the ability of a system to
undergo a phase transformation, is usually defined as a dimensionless positive value that
varies from zero to unity. For example, considering a supercooled melt, we can define
w = ∆T/∆T0 as the ratio of the current melt supercooling ∆T to its initial supercooling
∆T0. By analogy, when dealing with the crystallization of a supersaturated solution, we
have w = ∆C/∆C0, where ∆C and ∆C0 stand for the current and initial supersaturations.
Note that in the case of boiling of a superheated liquid and combustion of a polydispersed
fuel, w can be defined as the dimensionless superheating of the medium [25,26,30,46,47],
and in the case of dissolution of dispersed solids, w is described by the dimensionless
undersaturation of the liquid [31–33].
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The growth/reduction rate of particles V entering the governing Equations (1) and (3)
substantially influences the phase transformation phenomenon. So, in the simplest case, it
is proportional to the metastability degree and depends only on time t in a homogeneous
system as a complex function of w, i.e., V = V(w(t)) [48–50]. However, it is often necessary
to consider particle growth/reduction laws where V also depends on the particle radius r,
i.e., V = V(r, w(t)) (see, among others, [51–55]). If the system is spatially inhomogeneous,
V = V(r, w(x, t)).

Equations (1) and (3) should be supplemented by initial and boundary conditions that
reflect the physical meaning of the process under consideration. So, for example, initial
conditions can be written in the form

f (r, x, 0) = f0(r, x),
r∗∫

r∗

f0(r, x)dr = n0(x),

T(x, 0) = T0(x), w(x, 0) = w0(x),

(4)

where n0(x) is the initial number concentration of particles. Here we assume that the initial
particle-size distribution function is f0(r, x), the system has an initial temperature T0(x),
and its metastability degree is w0(x).

Note that the flux of particles of a given size (V f and V f − D∂ f /∂r in cases of the
first- and second-order kinetic Equation (1), respectively) defines the rate I(w) of phase
transformation process under consideration. This physical law determines the boundary
condition of the form

V f − D
∂ f
∂r

= I(w), r = r1, (5)

where r1 is the boundary point of system transition from one phase state to another (e.g., r1
can be equal to 0 or r∗). In the case of particle nucleation, Equation (5) determines the flux
of particles crossing the nucleation barrier. So, dealing with crystal nucleation, we obtain
r1 = r∗ with I(w) being the rate (frequency) of nucleation [9]. Considering evaporation
kinetics of a polydisperse ensemble of drops, we get r1 = 0 with I(w) being the rate of
evaporation [21]. When neglecting “diffusion term” D∂ f /∂r (neglecting fluctuations in the
growth/reduction rates of particles), the kinetic Equation (1) and boundary condition (5)
become simpler. This, for example, can occur when modeling bulk crystal growth in a
supercooled (supersaturated) liquid [56] and intense boiling in a superheated liquid [25,26]
(in the latter case, I(w) has the meaning of the rate of bubble appearance).

If the kinetic Equation (1) takes “diffusion term” into account (the second-order equation
with respect to the variable r), we need one more boundary condition. Such a condition can
express the fact that there are no crystals of a certain size r2 in the metastable system, i.e.,

f → 0, r = r2, (6)

So, for instance, r2 = rp when modeling continuous operation of the crystalliser,
taking into account the withdrawal process of product crystals of a given size rp [57].
When considering crystal growth without withdrawal mechanism [58] or dissolution of
crystals [16,17], r2 → ∞.

Thus, equations and boundary conditions (1)–(6) represent the closed model describing a
phase transformation phenomenon accompanying the evolution of a particulate assemblage.

2.2. The Methods

Let us highlight below the main methods of theoretical modeling which allow obtain-
ing analytical solutions to the aforementioned model equations. The first of them consists
of applying the separation of variables method to the first-order kinetic Equation (1) in the
absence of “diffusion term” (see, among others, [18,31–33,49,50]). This method requires
additional requirements to obtain the constant of variables separation (e.g., considering
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asymptotic behavior or comparing with experiments). Another technique in solving the
first-order kinetic equation is based on the Laplace integral transform or the method of char-
acteristics [48,59,60]. The second-order kinetic Equation (1) can be solved using the classical
scheme of the separation of variables method [57] or the scheme suggested in Ref. [42]
for obtaining a parametric solution. As this takes place, the distribution function found
from (1) using one of these methods will be dependent on unknown metastability degree
w. Therefore, we should substitute it into the balance Equation (3) and obtain a single
integrodifferential equation for w. Such an equation can be solved using the saddle-point
technique [33,61]. In the next section, we demonstrate the method of an analytical solution
to the spatially homogeneous problem of particle nucleation and growth when the sink of
product crystals plays a substantial role.

3. Bulk Crystal Growth

Below we consider the process of nucleation and growth of a polydisperse ensemble
of spherical crystals in a metastable liquid (supercooled melt or supersaturated solution)
with allowance for heat (mass) exchange with the environment and withdrawal mechanism
of crystals of a given size. At first, we pay our attention to a simpler model containing
the first-order kinetic equation. Then the model is extended to a more general case of the
second-order kinetic equation that takes fluctuations in crystal growth rates into account.

3.1. Kinetic Equation of the First Order with a Sink of Crystals

Let us consider the process of nucleation and growth of crystals in a single-component
metastable melt or solution neglecting fluctuations in the growth rates of spherical crystals
(D = 0) and their external sources (g = 0). Furthermore, assuming that h = h(r), we
simplify Equation (1) as (v = 0):

∂ f
∂t

+
∂

∂r
(V f ) + h(r) f = 0. (7)

For simplicity, we suppose that r∗ = 0, r∗ → ∞, and rewrite Equation (3) if crystals
evolve in a single-component supercooled melt as

dT
dt

=
QT(w)

ρc
+ ηi

∞∫
0

r2V f (r, t)dr, (8)

where QT = Qρc < 0, w(t) = ∆T(t)/∆T0, ηi = 4πLV/(ρc), LV represents the latent heat
of crystallization, ρ is the melt density, and c is the specific heat.

If crystals evolve in a metastable solution we should use the mass balance equation
instead of heat balance, which reads as

dC
dt

= QC(w) + ηi

∞∫
0

r2V f (r, t)dr, (9)

where Q = QC > 0, w(t) = ∆C(t)/∆C0, ηi = −4πCp, and Cp stands for the saturation
concentration.

The boundary condition (5) becomes

V f = I(w), r = 0, (10)

where I(w) denotes the rate of nucleation and V f is the flux of crystals overcoming the
nucleation barrier. The growth rate V entering this condition will be considered accordingly
to the theory of steady-state crystal growth [51] and reads as

V =
βk∆T

1 + βkqTr
, qT =

LV
kl

(11)
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for one-component supercooled melts (subscript “sm”), and

V =
βk∆C

1 + βkqCr
, qC =

Cp

Dl
(12)

for supersaturated solutions (subscript “ss”). Here kl is the coefficient of thermal conduc-
tion, and Dl is the diffusion coefficient.

The nucleation rate I(w) depends on the nucleation mechanism. Dealing with the
Weber-Volmer-Frenkel-Zel’dovich (WVFZ) kinetics, we obtain [51]

I(w)sm = I∗ exp
(
− p

w2

)
, I(w)ss = I∗ exp

(
− p

ln2(1 + ∆C/Cp)

)
, (13)

where I∗ and p are considered as constants for simplicity. Dealing with the Meirs nucleation
kinetics, we have

I(w)sm = I∗(∆T0w)p, I(w)ss = I∗(∆C0w)p. (14)

In this case, we also assume that I∗ and p are constant.
Consider the simplest situation when the metastable system did not contain any

crystals at the initial moment of time. In this case, the initial conditions (4) read as

f (r, 0) = 0, w(0) = 1, t = 0. (15)

For the sake of convenience, we will solve the problem (7)–(15) using the dimensionless
functions and variables

τ =
t
t∗

, ζ =
r
r0

, Φ(ζ, τ) = r4
0 f (r, t), (16)

B1 =
4πLV
ρc∆T0

, Q(w) = − QTt∗
ρc∆T0

, αk =
βkLVr0

kl
, t∗ =

1(
β3

k∆T3
0 Ĩ
)1/4 , r0 =

(
βk∆T0

Ĩ

)1/4

when considering a supercooled liquid, and

B1 =
4πCp

∆C0
, Q(w) =

QCt∗
∆C0

, αk =
βkCpr0

Dl
, t∗ =

1(
β3

k∆C3
0 Ĩ
)1/4 , r0 =

(
βk∆C0

Ĩ

)1/4

when considering a supersaturated liquid and Ĩ = I(1).
Substituting (16) into (7)–(15), we rewrite the model in dimensionless form as

∂Φ
∂τ

+ w
∂

∂ζ

(
Φ

1 + αkζ

)
+ H(ζ)Φ = 0, ζ > 0, τ > 0, (17)

dw
dτ

= Q(w)− B1w
∞∫

0

Φ(ζ, τ)

1 + αkζ
ζ2dζ, τ > 0, (18)

Φ = Ψ(w) = w−1 exp[pψ(w)], ζ = 0; Φ = 0, w = 1, τ = 0. (19)

where ψ(w) is presented in Table 1 and H(ζ) = t∗h(ζr0).
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Table 1. Analytical functions for various kinetic mechanisms, R0 = ln−2(1 + w−1
p ), wp = Cp/∆C0,

w0p = 1 + w0/wp and C = ∆C + Cp.

Supercooled Liquids Supersaturated Liquids

WVFZ Mechanism Meirs Mechanism WVFZ Mechanism Meirs Mechanism

I I∗ exp
(
−p
w2

)
I∗(∆T0w)p I∗ exp

[
−p

ln2(C/Cp)

]
I∗(∆C0w)p

ψ(w) 1− w−2 ln w R0 − ln−2(1 + w/wp) ln w
ψ′′|µ0 −B1µ2

0/w2
0 −B1µ2

0/2 − ln−3(w0p
)

B1w0µ2
0/(wp + w0) −B1µ2

0/2

Integrating Equation (17) and taking the initial condition (19) into account, we come to

Φ(ζ, τ) = (1 + αkζ)Ψ(w(λ)) exp

− η∫
0

Ξ(v + λ, v)dv

Heav(λ), (20)

where

λ(ζ, τ) = ξ(τ)− η(ζ), ξ(τ) =

τ∫
0

w(τ1)dτ1, η = ζ +
αkζ2

2
, Ξ(ξ, η) =

H(ζ(η))

w(ξ)
, (21)

and Heav(·) stands for the Heaviside function. Let us emphasise that Equation (20) depends
on the unknown metastability degree w, which can be obtained from Equation (18).

Let us now integrate the crystal growth rate

V =
dr
dt

=
r0

t∗
dζ

dτ
=

r0

t∗
w(τ)

1 + αkζ
. (22)

Taking the initial condition ζ = 0 at τ = µ into account, we have

ζ(τ) =

√
1 + 2αk[ξ(τ)− ξ(µ)]− 1

αk
. (23)

Here we assume that a growing crystal appears at time τ = µ. Note that the crystal of
maximum radius ζm(τ) appears at initial time µ = 0

ζm(τ) =

√
1 + 2αkξ(τ)− 1

αk
. (24)

Now we change the integration variable ζ in (18) by the new variable µ accordingly to
ξ(µ) = ξ(τ)− η(ζ). Taking (20) and wdµ = −(1 + αkζ)dζ into account, we obtain

dw
dτ

= Q(w)− B1w
τ∫

0

u(µ, τ) exp[pψ(w(µ))]dµ, (25)

where

u(µ, τ) =

[√
1 + 2αk[ξ(τ)− ξ(µ)]− 1

]2

α2
k

√
1 + 2αk[ξ(τ)− ξ(µ)]

exp[−H(τ − µ)]. (26)

Here the function ψ(w) is presented in Table 1. Further, for reasons of simplicity,
we assume that the dimensionless crystal removal rate from the crystallizer is constant,
i.e., H = const.
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To find w, we evaluate the integral in (25) using the saddle-point technique [33,61]

τ∫
0

u(µ, τ) exp[pψ(w(µ))]dµ ≈ 1
√

p
exp[pψ(w(µ0))]

∞

∑
j=0

bj(µ0, τ)

pj , (27)

where

bj(µ0, τ) = −22j+1

(2j)!
Γ
(

2j + 1
2

)[
M(µ0, µ)

∂

∂µ

]2j
[u(µ, τ)M(µ0, µ)]µ=µ0

,

M(µ0, µ) =

√
ψ(w(µ0))− ψ(w(µ))

ψ′(w(µ))
.

(28)

Here Γ(·) represents the gamma function and µ0 is a high point of ψ(w(µ0)). Note
that µ0 = 0 if Q = 0 [51] (no heat/mass exchange with the environment). Dealing with the
case Q 6= 0, we expand the integral term in (25) in series near the point τ = 0 and obtain

dw
dµ

= Q(w)− B1wµ3

6
. (29)

Taking dψ/dµ ∼ dw/dµ into account, we conclude that the point µ0 can be found
from the equation dw/dµ = 0 at µ = µ0. As a result, we have from (29)

Q(w0) =
B1w0µ3

0
6

, w0 = w(µ0). (30)

This expression represents the first condition connecting w0 and µ0. The second
condition follows from the Cauchy problem (29) and w = 1 at µ = 0. This means that w0
and µ0 in expressions (27) and (28) are found. The coefficients of analytical solutions (27)
and (28) are given in the Appendix A.

Now keeping in mind the main contribution in the integral term (27), we arrive at

dw
dτ

= Q(w) +
2B1w
√

p
exp[pψ(w0)]Γ(1/2)u(µ0, τ)M, (31)

where M(µ0) is also written out in the appendix A. Let us especially emphasize that u in (31)
depends on ξ(τ), which is a function of w(τ). Therefore, Equation (31) is integrodifferential.
To simplify the matter, we introduce the following substitution Σ(τ) = ξ(τ) − ξ(µ0).
Keeping this in mind, we get from (31)

Σ′′ = Q + 2B1Σ′ exp[pψ0 − H(τ − µ0)]Γ(1/2)

(√
1 + 2αkΣ− 1

)2

α2
k
√

p
√

1 + 2αkΣ
M, (32)

where Q = Q(Σ′), ψ0 = ψ(w0), Σ′(0) = 1 and Σ(0) = 0.
An important point is that Σ(τ) and w(τ) = Σ′(τ) can be found from the two-point

Cauchy problem (32). Next substituting w into (20), we obtain the distribution function
Φ(ζ, τ). An important point is that Φ depends on λ, which represents a time lag. If more
terms in the asymptotic solution (27) and (28) are taken into account (not just the main
contribution), we can obtain an equation for Σ(τ) similar to Equation (32). The right-hand
side of such an equation will also depend on Σ (see the Appendix A).

The analytical solution based on expressions (20) and (32) is illustrated in Figures 1 and 2
for the WVFZ nucleation mechanism. The dynamics of desupercooling shown in Figure 1
for the WVFZ mechanism of crystal nucleation in the presence of heat sink (Q = 0.01 and
Q = 0.05 in Figure 1) essentially differs from the case Q = 0 when heat/mass exchange
with the environment is negligible. Such a theory with Q = 0 was developed in Ref. [51].
Indeed, the presence of a high point of w caused by Q(w) in (32) slightly increases w(τ) at
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the initial stage. After that w attains the maximum at a certain point τm and then begins
to decrease as a result of crystal growth in a supercooled melt (crystals release the latent
heat and partially compensate w). Note that the point τm → 0 in the limiting case Q→ 0
(when the metastable liquid is not being cooled). In this case, w has no maximum point
and is a monotonically decreasing function for all τ (the green dash-dotted curve shown
in Figure 1) [51]. It is significant that w reduces slower as Q increases (e.g., compare the
blue and red solid curves in Figure 1)). This is explained by the stronger cooling of the
metastable liquid as Q increases. A similar effect is observed when product crystals are
withdrawn from the crystallizer (e.g., compare the solid and dashed curves of the same
color). In this case, the more H the slower w decreases.

Figure 1. Metastability degree w = ∆T/∆T0 versus dimensionless time τ = t/t∗. The system
parameters used in calculations correspond to supercooled melts [51]: B1 = 49.9, αk = 5.5 · 10−4,
p = 7.4, H = 0 (dashed curves) and H = 3 (solid curves). The green dash-dotted curve is plotted for
Q = 0 and H = 0.

Figure 2. Particle-radius distribution function Φ(ζ, τ) versus dimensionless radius ζ. Numbers at
the curves indicate various times τ. The red dashed and solid curves are illustrated for H = 0 and
H = 3, respectively, (Q = 0.05). The green dash-dotted curves are plotted for Q = 0 and H = 0. The
maximum radii ζm(τ) of crystals are shown by the perpendiculars to the abscissa axis.

The particle-radius distribution function Φ increases and slightly decreases up to the
maximum crystal size ζm, which is shown by the vertical line in Figure 2 at a fixed point in
time τ. Namely, Φ contains a point of maximum in the presence of heat sink (when Q > 0).
If Q = 0 the distribution function is a monotonically increasing function until ζ reaches a
maximum value of ζm (see also Ref. [51]). As this takes place, the distribution function is
narrower and reaches large values at small times (compare two solid curves at τ = 0.2 and
τ = 0.4). This is due to the fact that supercooling is greater at lower times and therefore
more intense nucleation and crystal growth occur. As time passes, crystals grow in the
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supercooled system and the distribution function becomes wider and lower. If product
crystals are withdrawn from the crystallizer (H = 3), the distribution function is smaller as
compared to no withdrawal (H = 0) (compare the solid and dashed curves at the same τ).
Furthermore, note that crystals of maximum radius ζm become larger in the case of more
intense cooling (as Q grows) (compare the green and red curves at the same τ).

3.2. Kinetic Equation of the Second Order with a Sink of Crystals

Let us now demonstrate the method of solution when fluctuations in crystal growth
rates are taken into consideration. In this case, the kinetic equation has the form (as before,
we neglect external sources of particles, i.e., g = 0)

∂ f
∂t

+
∂

∂r
(V f ) + h(r) f =

∂

∂r

(
D

∂ f
∂r

)
. (33)

For the sake of simplicity, we consider Equation (33) with constant h = FR/Vcr [62,63].
Here FR stands for the feed rate, and Vcr is the volume of a metastable liquid where
crystals evolve.

As before, we consider here two possible cases of a crystallizer filled with (i) a single-
component metastable melt and (ii) a metastable solution. In the first case, the heat balance
law looks like

dT
dt

=
QT
ρc

+ ηi

∞∫
r∗

r2
(

V f (r, t)− D
∂ f
∂r

)
dr. (34)

In the second case, we have the mass balance condition

dC
dt

= QC(w) + ηi

∞∫
r∗

r2
(

V f (r, t)− D
∂ f
∂r

)
dr. (35)

Here we will show how to solve the problem dealing with the critical radius r∗ of
new phase nuclei. Note that ηi = 4πLV/(ρc) and ηi = −4πCp for supercooled melts and
supersaturated solutions, respectively. As before, QT < 0 and QC > 0. These heat/mass
balances transform to corresponding balances (8) and (9) when neglecting fluctuations
in particle growth rates (D = 0). To simplify the matter we consider the simplest case
of the “diffusion” coefficient D = d1V in the space of particle radii [64–66], where d1 is
constant. In addition, we consider the simplest case for crystal growth rate: V = βk∆T and
V = βk∆C when dealing with metastable melts and solutions, respectively.

The boundary conditions defining the flux of nucleating crystals and removal of
product crystals with radius rp take the form

V f − D
∂ f
∂r

= I(w), r = r∗; f = 0, r = rp. (36)

Here the rate I of nucleation is defined accordingly to the WVFZ and Meirs kinetic
mechanisms described in Section 3.1. The first boundary condition in (36) follows from (5)
while the second condition (36) is written with allowance for total withdrawal of crystals of
radius rp from the metastable liquid of the crystalliser.

Let us chose the initial conditions as

f (r, 0) = f0(r), w(0) = 1, t = 0. (37)

Here we assume that the initial particle-size distribution function f0(r) is known.
Thus, the governing equations, boundary, and initial conditions (33)–(37) determine the
evolution of a polydisperse ensemble of spherical crystals in a crystallizer filled with a
supercooled melt or supersaturated solution. This model includes heat/mass exchange
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with the environment through QT/QC and removal of product crystals of size rp from a
metastable liquid through h.

Let us now use the following rescaled variables and parameters when considering the
phase transition in a supercooled melt

Φ(z, τ) = r4
0 f (r, t), Φ0(z) = r4

0 f0(r), τ =
t
t∗

, ζ =
r
r0

, ζ∗ =
r∗
r0

, ζp =
rp

r0
,

v0 =
d1

r0
, w =

∆T
∆T0

, B1 =
4πLV
ρc∆T0

, Q = − QTt∗
ρc∆T0

, t∗ =
1(

β3
k∆T3

0 Ĩ
)1/4 ,

r0 =

(
βk∆T0

Ĩ

)1/4
, z = ζ − ζ∗, z0 = ζp − ζ∗, γ = t∗h, Ĩ = I(1).

(38)

If crystals grow in a supersaturated solution we must take the substitutions ∆T → ∆C,
∆T0 → ∆C0, LV/(ρc)→ Cp, and −QT/(ρc)→ QC.

Now rewriting the model (33)–(37) using (38), we arrive at

∂Φ
∂τ

+ w
∂Φ
∂z

+ γΦ = v0w
∂2Φ
∂z2 , 0 < z < z0, τ > 0, (39)

dw
dτ

= Q(τ)− B1w
z0∫

0

(z + ζ∗)
2
(

Φ(z, τ)− v0
∂Φ
∂z

)
dz, τ > 0, (40)

w = 1, Φ = Φ0(z), τ = 0; Φ− v0
∂Φ
∂z

= P(w), z = 0; Φ = 0, z = z0, (41)

where P(w) = w−1 exp[pψ(w)] and ψ(w) is defined in Table 1.
First we find the stationary solution when nothing depends on τ. In this case,

Equation (39) leads to

Φs(z) = exp
(

z
2v0

)
(A1 exp(κz) + A2 exp(−κz)), κ =

(
γ

v0ws
+

1
4v2

0

)1/2

, (42)

where subscript “s” designates the steady-state solutions. The boundary conditions (41)
enable us to determine A1 and A2 as

A1 = −A2 exp(−2κz0), A2 =
2 exp(pψ(ws))

ws[1 + 2κv0 + (2κv0 − 1) exp(−2κz0)]
.

As this takes place, the steady-state metastability degree ws satisfies the equation
following from (40)

B1ws

z0∫
0

(z + ζ∗)
2
[

Φs(z)− v0
dΦs

dz

]
dz−Q = 0. (43)

Thus, the steady-state solutions, Φs(z) and ws, are defined by expressions (42) and (43).
Equation (39) in unsteady-state case can be solved using the technique of variables

separation. To make the boundary condition (41) at z = 0 homogeneous, let us make the
following substitution

Φ1(z, τ) = Φ(z, τ)− P(w(τ))(z0 − z)
z0 + v0

. (44)

Note that P = 1 for τ = 0 (when the metastability degree w = 1).
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Substituting (44) into (39) and (41), we come to

∂Φ1

∂τ
+ w

∂Φ1

∂z
+ γΦ1 − v0w

∂2Φ1

∂z2 = σ(z, τ), (45)

Φ1 = Φ0(z)−
z0 − z
z0 + v0

, τ = 0; Φ1 − v0
∂Φ1

∂z
= 0, z = 0; Φ1 = 0, z = z0, (46)

σ(z, τ) =
P(w(τ))

z0 + v0
[w(τ)− γ(z0 − z)]− z0 − z

z0 + v0

dP
dτ

. (47)

Now we separate the variables in (45) as

Φ1(z, τ) = Z(z)Θ(τ). (48)

Then the boundary conditions (46) become Z(0)− v0Z′(0) = 0 and Z(z0) = 0.
Taking this into account and using the method of variables separation, we get the

eigenfunctions Zj(z) and equation for eigenvalues mj as follows

Zj(z) =
[
2mjv0 cos(mjz) + sin(mjz)

]
exp

(
z

2v0

)
,

2mjv0 cos(mjz0) + sin(mjz0) = 0, j = 0, 1, 2, . . . .
(49)

Next let us expand σ(z, τ) and Φ1(z, 0) in series of eigenfunctions as

σ(z, τ) =
∞

∑
j=0

σj(τ)Zj(z), Φ1(z, 0) =
∞

∑
j=0

Φ0jZj(z),

σj(τ) =
1
Υj

z0∫
0

σ(z, τ) exp
(
− z

v0

)
Zj(z)dz,

Φ0j =
1
Υj

z0∫
0

[
Φ0(z)−

z0 − z
z0 + v0

]
exp

(
− z

v0

)
Zj(z)dz,

Υj =

z0∫
0

[
2mjv0 cos(mjz) + sin(mjz)

]2dz.

(50)

Keeping this in mind, we have from (48)

Φ1(z, τ) =
∞

∑
j=0

Zj(z)Θj(τ). (51)

Now combining (45), (50) and (51) we obtain an equation for Θj(τ). Integration of this
equation leads to

Φ1(z, τ) =
∞

∑
j=0

Zj(z)

Φ0j +

τ∫
0

σj(τ1) exp(δj(τ1))dτ1

 exp
(
−δj(τ)

)
,

δj(τ) =

τ∫
0

ωj(τ2)dτ2, ωj(τ) = w(τ)

(
m2

j v0 +
1

4v0

)
+ γ.

(52)

Now the dimensionless distribution function Φ(z, τ) can be found from expression (44).
An important point is that Φ depends on w. To find w we must use the balance Equation (40).



Crystals 2022, 12, 949 13 of 20

For this purpose, we evaluate the integral in (52) applying the saddle-point technique [33,61]
for v0 � 1. Introducing

Λj(τ) = (1 + 4v2
0m2

j )

τ∫
0

w(τ1)dτ1 + 4v0γτ, δj(τ) =
Λj(τ)

4v0
(53)

We evaluate the integral term in (52) keeping in mind that Λ′j(τ) > 0. So, since
Λj(τ) grows and reaches a maximum at the upper limit, we obtain the main integral
contribution [33,61]:

τ∫
0

σj(τ1) exp
(Λj(τ1)

4v0

)
dτ1 ≈

4v0σj(τ) exp
[
Λj(τ)/(4v0)

]
Λ′j(τ)

. (54)

Now combining (52) and (54), we obtain

Φ1(z, τ) =
∞

∑
j=0

Zj(z)

[
Φ0j exp

(
−δj(τ)

)
+

4v0σj(τ)

(1 + 4v2
0m2

j )Ω
′(τ) + 4v0γ

]
,

Ω(τ) =

τ∫
0

w(τ1)dτ1.

(55)

Substitution of (55) into (40) gives the following two-point Cauchy problem for the
determination of Ω(τ):

Ω′′ = N0(Ω′, Ω, τ),

Ω = 0, Ω′ = 1, τ = 0,
(56)

where N0 is given in the Appendix B.
Thus, we have constructed a complete analytical solution. Namely, the solution to the

Cauchy problem (56) is a standard procedure programmed into various modern software
packages. Therefore Ω(τ) is considered to be known. Then substituting this function into
w(τ) = Ω′(τ) and expressions (44) and (55), we find the metastability degree w(τ) and
distribution function Φ(z, τ). An important point is that this solution is constructed taking
the main contribution of the saddle-point method into account (see expansion (54)). A more
precise solution to the problem, taking two terms in the asymptotic expansion into account,
is given in Appendix C.

Our analytical solutions are illustrated in Figures 3–5. In Figure 3, we compare the
analytical solutions (56) found with allowance for the main contribution (54) and (C3)
found with allowance for the main contribution and the first correction (C1). The main
conclusion is that these solutions coincide. This indicates that the first correction does not
influence the behavior of solutions essentially and we can use simpler formula (56) to plot
the curves. Figure 3 also shows that the metastability degree w reduces with time and
fluctuates due to the fluctuations of thermal outflux QT(τ) = Q0(1− sin(vτ)/2), where
v = π/15. Furthermore, note that the more heat escapes the system (more Q0), the more
the melt cools and w increases.
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Figure 3. Metastability degree w = ∆T/∆T0 versus dimensionless time τ = t/t∗ for the Meirs
nucleation mechanism. The red solid and green dash-dotted curves are plotted accordingly to the
analytical solutions (56). The red circles and blue triangles show the corresponding curves plotted
accordingly to our solution (C3) (see the Appendix C). The system parameters used in calculations
are: v0 = 0.01, p = 2, t∗ = 178 s, r0 = 1.8 · 10−4 m, ζ∗ = 5.6 · 10−6, ζp = 0.056, B1 = 748, z0 = 0.056,
γ = 0.71. The initial crystal-radius distribution function Φ0(z) = (z0 − z)/(z0 + v0).

Figure 4. Particle-radius distribution function Φ(z, τ) versus dimensionless time τ accordingly to the
analytical solutions (44) and (55).

Figure 5. Particle-radius distribution function Φ(z, τ) versus dimensionless radius z accordingly to
the analytical solutions (44) and (55). Here Q0 = 0.005 and ws = 0.349. The steady-state distribution
function Φs(z) (red squares) is plotted accordingly to the analytical solution (42).
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Figure 4 illustrates the particle-radius distribution function versus time at fixed values
of particle radii. One can easily see that the melt contains more small crystals (z = 0.01) and
lesser larger particles (z = 0.05). Figure 5 shows the distribution of crystals of various sizes
at fixed times τ. We can see that the particle-radius distribution function evolves with time
to the steady-state distribution Φs(z). That means, in particular, that a stationary regime
establishes at large times.

4. Conclusions

In summary, we have formulated a generalized mathematical model of particle ensem-
ble evolution suitable for describing various physical processes and phenomena of nature.
For example, the aforementioned model can be used when describing (i) nucleation and
growth of crystals in the metastable liquid or gas phase, (ii) dissolution of crystals in an
under-saturated liquid, (iii) evaporation of liquid droplets in metastable gas-vapor systems,
(iv) intense liquid boiling, and (v) dispersed fuel combustion.

In this study, we discussed the theoretical methods that enable constructing a com-
plete analytical solution to the problem of nucleation and growth of spherical particles
in metastable media with allowance for external heat sink (mass source) and outward
crystal removal. These methods are based on the saddle-point technique to calculate the
Laplace-type integral and the separation of variables method to find the eigenvalues and
eigenfunctions of the corresponding boundary-value problem. As this takes place, the
application of these methods depends on the order of the kinetic equation. Namely, in
dealing with the first-order equation, we should use the first of these methods (Section 3.1).
If fluctuations in growth rates of crystals are taken into account, we must use both of these
methods (Section 3.2). The theory was developed for particular laws of crystal growth
rates V(t) and nucleation kinetics I(w(t)). However, the aforementioned mathematical
technique can be used when considering more complicated laws for V(t) and I(w(t)) (see,
among others, [9,67]). What is more, we can restrict ourselves to the first contributions of
the asymptotic solution of the saddle point technique [33,61] (as a rule, we need the main
contribution and some first corrections to it).

The analytical technique described above can be used when studying similar problems
about the evolution of particulate assemblages with allowance for heat/mass exchange with
the environment and possible removal of particles of a given size (for example, nucleation
and evolution of crystals with polymerization in a monomer metastable liquid [6,45], bulk
solidification with a two-phase region [68,69], magma, lava and ice crystallization [70,71],
phase transformations when producing medicines, food additives and various chemical
compounds [5,49,50,72,73]).
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Appendix A

The metastability degree w near the maximum point µ = µ0 is defined by

dw
dµ

= Q(w)− B1w(µ)
µ3

6
.

The derivatives of this function near µ = µ0 (w0 = w(µ0)) take the form(
dw
dµ

)
µ0

= 0,
(

d2w
dµ2

)
µ0

= −
B1w0µ2

0
2

,

(
d3w
dµ3

)
µ0

=
B2

1w0µ5
0

12
− B1w0µ0 −

B1w0µ2
0

2

(
dQ
dw

)
w0

,

(
d4w
dµ4

)
µ0

=

[(
dQ
dw

)
w0

−
B1µ3

0
6

](
d3w
dµ3

)
µ0

− B1

[
w0 +

3
2

µ2
0

(
d2w
dµ2

)
µ0

]
.

The coefficients of the analytical solution (28) at µ→ µ0 are given by

M2|µ0 =
−1

2ψ′′|µ0

, M′2µ0
= −

ψ′′′2|µ0

18ψ′′3|µ0

, M′′2µ0
= −

[
11ψ′′′2|µ0 − 9ψ′′|µ0 ψ(IV)|µ0

]2

2592ψ′′5|µ0

.

To solve the problem more accurately, it may be necessary to use more coefficients of
the asymptotic saddle point solution. In this more general case, the metastability degree
w(τ) = Σ′(τ) is defined by

Σ′′ = Q(Σ′)− B1Σ′p−1/2 exp(pψ0)
∞

∑
j=0

b̃j(µ0, Σ(τ))p−j,

where

b̃j(µ0, Σ) = −22j+1

(2j)!
Γ
(

j +
1
2

)[
M(µ0, µ)

∂

∂µ

]2j
(ũ(µ0, µ, Σ)M(µ0, µ))µ=µ0

,

ũ(µ0, µ, Σ) = α−2
k

{√
1 + 2αk[Σ + ξ(µ0)− ξ(µ)]− 1

}2√
1 + 2αk[Σ + ξ(µ0)− ξ(µ)]

exp[−H(τ − µ)].

Appendix B

The function N0 entering in Equation (56) is defined as follows

N0
(
Ω′, Ω, τ

)
=
{

Q(τ) + (∆1 − B1Ψ) exp
(

pψ
(
Ω′
))
− B1Ω′Σ2

−4v0B1Ω′ exp
(

pψ
(
Ω′
))[

Σ3 − Σ4/Ω′
]}[

1− B1Ω′ exp
(

pψ
(
Ω′
))

W
(
Ω′
)
Σ1
]−1,

where

Ψ =
(z0 + ζ∗)4 − 4ζ3

∗(z0 + ζ∗) + 3ζ4
∗

12(z0 + v0)
, ∆1 =

B1v0
[
ζ3
∗ − (z0 + ζ∗)3]

3(z0 + v0)
,

Σ1 = 4v0

∞

∑
j=0

σj3
(

Mj − v0Ej
)

Kj(Ω′)
, Σ2 =

∞

∑
j=0

Φ0j exp
(
−δj(Ω, τ)

)(
Mj − v0Ej

)
,
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Σ3 =
∞

∑
j=0

σj1
(

Mj − v0Ej
)

Kj(Ω′)
, Σ4 =

∞

∑
j=0

σj2
(

Mj − v0Ej
)

Kj(Ω′)
, W(Ω′) =

pψ′Ω′ − 1
Ω′2(p− 1)

,

Mj =

z0∫
0

(z + ζ∗)
2Zj(z)dz, Ej =

z0∫
0

(z + ζ∗)
2 dZj(z)

dz
dz, ψ(w) = ψ(Ω′),

Kj
(
Ω′
)
=
(

1 + 4v2
0m2

j

)
Ω′ + 4v0γ, σj1 =

1
Υj(z0 + v0)

z0∫
0

Zj(z) exp
(
−z
v0

)
dz,

σj2 =
γ

Υj(z0 + v0)

z0∫
0

(z0 − z)Zj(z) exp
(
−z
v0

)
dz, σj3 =

(p− 1)σj2

γ
.

Appendix C

Here we take into account the first correction factor to the main contribution to the
integral (54). So, using the saddle-point technique, we obtain [33,61]

τ∫
0

σj(τ1) exp
(Λj(τ1)

4v0

)
dτ1 ≈ 4v0 exp

[Λj(τ)

4v0

](
σj(τ)

Λ′j(τ)
− 4v0α1j(τ)

)
, (A1)

where

α1j(τ) =
Γ(2)

Λ′j(τ)
d

dτ1

(
σj(τ1)

Λ′j(τ1)

)
, τ1 = τ.

Let us especially emphasize that the first term in the expansion (C1) represents the
main contribution of the saddle-point method obtained in (54).

In this case, the rescaled distribution function Φ1(z, τ) becomes (instead of formula (55))

Φ1 ≈
∞

∑
j=0

Zj(z)

Φ0j exp
(
−δj(τ)

)
+

4v0σj(τ)(
1 + 4v2

0m2
j

)
Ω′(τ) + 4v0γ

−
16v2

0Γ(2)(
Kj(Ω′)

)3 (A2)

×
[
Kj
(
Ω′
)
ιj(Ω′, Ω′′)− σj3Kj

(
Ω′
)

exp
(

pψ(Ω′)
)
W(Ω′)Ω′′′(τ)− σj(τ)Λ′′j (Ω

′′)
]}

where

σj(τ) = σj(Ω′, Ω′′) =
(

σj1 −
σj2

Ω′(τ)
− σj3W(Ω′)Ω′′(τ)

)
exp

(
pψ(Ω′)

)
,

ιj(Ω′, Ω′′) = exp
(

pψ(Ω′)
)
Ω′′
{

pσj1ψ′ −
σj2

Ω′

[
pψ′ − 1

Ω′

]
−σj3Ω′′

[
pψ′W(Ω′) +

dW
dΩ′

]}
, ψ′ =

dψ

dΩ′
, Λ′′j (Ω

′′) =
(

4m2
j v2

0 + 1
)

Ω′′.

Now we have from (40) and (A2)

Ω′′′ = N1
(
Ω′′, Ω′, Ω, τ

)
, Ω = 0, Ω′ = 1, Ω′′ = Ωsd, τ = 0. (A3)

The boundary value Usd can be defined from expression (40) with allowance for
Φ(z, 0) = Φ0(z) and w = Ω′, and

N1
(
Ω′′, Ω′, Ω, τ

)
=
{

Q(τ)−Ω′′ + (∆1 − B1Ψ) exp
(

pψ
(
Ω′
))
− B1Ω′Σ2

+16v2
0Γ(2)B1Ω′Σ5 − B1 exp

(
pψ
(
Ω′
))[

4v0(Σ̄3Ω′ − Σ̄4)− Σ̄1Ω′W(Ω′)Ω′′
]}

×
{

4v0B1Γ(2)Ω′ exp
(

pψ
(
Ω′
))

W(Ω′)Σ6
}−1,
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where

Σ̄1 = 4v0

∞

∑
j=0

σj3υj(Ω′′)
(

Mj − v0Ej
)

Kj(Ω′)
, Σ̄3 =

∞

∑
j=0

σj1υj(Ω′′)
(

Mj − v0Ej
)

Kj(Ω′)
,

Σ̄4 =
∞

∑
j=0

σj2υj(Ω′′)
(

Mj − v0Ej
)

Kj(Ω′)
, υj(Ω′′) = 1 +

4v0Γ(2)Λ′′j (Ω
′′)(

Kj(Ω′)
)2 ,

Σ5 =
∞

∑
j=0

ιj(Ω′, Ω′′)
(

Mj − v0Ej
)(

Kj(Ω′)
)2 , Σ6 = 4v0

∞

∑
j=0

σj3
(

Mj − v0Ej
)(

Kj(Ω′)
)2 .
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