Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112159
Название: | Analytical Solutions to the Boundary Integral Equation: A Case of Angled Dendrites and Paraboloids |
Авторы: | Alexandrov, D. V. Galenko, P. K. |
Дата публикации: | 2021 |
Издатель: | John Wiley and Sons Ltd Wiley |
Библиографическое описание: | Alexandrov D. V. Analytical Solutions to the Boundary Integral Equation: A Case of Angled Dendrites and Paraboloids / D. V. Alexandrov, P. K. Galenko // Mathematical Methods in the Applied Sciences. — 2021. — Vol. 44. — Iss. 16. — P. 12058-12066. |
Аннотация: | The boundary integral equation is solved analytically in the case of two- and three-dimensional growth of angled dendrites and arbitrary parabolic/paraboloidal solid/liquid interfaces. The undercooling of a binary melt and the solute concentration at the phase transition boundary are found. The theory under consideration has a potential impact in describing more complex growth shapes and interfaces. © 2020 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd. |
Ключевые слова: | BOUNDARY INTEGRAL DENDRITE MODEL SOLIDIFICATION ENGINEERING MATHEMATICAL TECHNIQUES BINARY MELT PHASE-TRANSITION BOUNDARY POTENTIAL IMPACTS SOLID/LIQUID INTERFACES SOLUTE CONCENTRATIONS THREE-DIMENSIONAL GROWTH BOUNDARY INTEGRAL EQUATIONS |
URI: | http://elar.urfu.ru/handle/10995/112159 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85087171531 |
Идентификатор WOS: | 000544341600001 |
Идентификатор PURE: | 23817739 |
ISSN: | 0170-4214 |
DOI: | 10.1002/mma.6570 |
Сведения о поддержке: | This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project number FEUZ‐2020‐0057) and the German Space Center Space Management (contract number 50WM1941). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85087171531.pdf | 240 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.