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The boundary integral equation is solved analytically in the case of
two- and three-dimensional growth of angled dendrites and arbitrary
parabolic/paraboloidal solid/liquid interfaces. The undercooling of a binary
melt and the solute concentration at the phase transition boundary are found.
The theory under consideration has a potential impact in describing more
complex growth shapes and interfaces.
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1 INTRODUCTION

The boundary integral equation was derived for the first time by Nash and Glicksman1,2 for the pure thermal problem of
the solid–liquid interface evolution. Their theory was developed by Langer and Turski3,4 in describing the evolutionary
behavior of ‘solid–liquid’, ‘solid–solid’, and ‘fluid–fluid’ interface functions in the case of a chemical diffusion problem.
This theory was recently extended for propagating interfaces in a binary non-isothermal mixture.5,6 The boundary integral
method was generalized for the rapid crystallization conditions when the solute transport is described by a hyperbolic-type
diffusion equation in recently published theory.7,8

It is well-known that the boundary integral equation completely determines the nonlinear dynamics of the solid–liquid
interface when considering one-component and binary melt solidification processes.3-8 In addition, this equation enables
us to select a stable mode of dendritic growth, that is, to find a relation connecting the steady-state tip velocity and
tip radius of dendritic crystal.9-11 What is more, the boundary integral contains all the information about morphology,
instability, and pattern formation of propagating interfaces, and thus, it defines the morphological diversity of growth
shapes existing in nature and various physical applications.12 In the present article, we find an analytical solution in the
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form of parabolic and linear functions following from the boundary integral theory that reflects the growing shapes and
morphologies in binary systems.

2 THE MODEL

The phase transition interface 𝜁 dividing the solid and liquid material when describing the steady-state crystallization
process in a binary melt takes the form5-7

− Q
m0cp

[
Δ − dc

𝜌
K − 𝛽V − IT

𝜁

]
− Cl∞ = IC

𝜁
, (1)

where Q stands for the latent heat of solidification, m0 is the liquidus slope, cp represents the specific heat, Δ =(
T𝑓 − Tl∞

)
cp∕Q expresses the melt undercooling with Tf being the phase transformation temperature corresponding to

the planar front, dc is the anisotropic capillary length, K is the curvature of solid–liquid boundary, 𝜌 is a characteristic
length scale of a growing shape, 𝛽 is the kinetic coefficient of anisotropic growth, V is the steady-state growth rate, and Tl∞
and Cl∞ are the temperature and solute concentration in the liquid phase far from the growing shape. Note that curvature
K of the solid–liquid boundary in the two- and three-dimensional geometries can be written out as6,7

K(𝜁 ) =
⎧⎪⎨⎪⎩
− 𝜕2𝜁∕𝜕x2[

1+(𝜕𝜁∕𝜕x)2
]3∕2 , two dimensions

−∇ ·
[

∇𝜁√
1+(∇𝜁 )2

]
, three dimensions

. (2)

The boundary integrals IT
𝜁

and IC
𝜁

describing the temperature and concentration contributions are determined by the
interface function 𝜁 (x, y) and take the form5-7

IT
𝜁
= PT

∞

∫
0

d𝜏
2𝜋𝜏

∞

∫
−∞

exp
[
−PT

2𝜏
Σ(x, x1, 𝜏)

]
dx1,

IC
𝜁
= (1 − k0)PC

∞

∫
0

d𝜏
2𝜋𝜏

∞

∫
−∞

Ci(x1) exp
[
−PC

2𝜏
Σ(x, x1, 𝜏)

]
dx1,

Σ(x, x1, 𝜏) = (x − x1)2 + [𝜁 (x) − 𝜁 (x1) + 𝜏]2,

(3)

in the two-dimensional geometry and

IT
𝜁
= P3∕2

T

∞

∫
0

d𝜏
(2𝜋𝜏)3∕2

∞

∫
−∞

∞

∫
−∞

exp
[
−PT

2𝜏
Σ(x, x1, 𝜏)

]
d2x1,

IC
𝜁
= (1 − k0)P3∕2

C

∞

∫
0

d𝜏
(2𝜋𝜏)3∕2

∞

∫
−∞

∞

∫
−∞

Ci(x1) exp
[
−PC

2𝜏
Σ(x, x1, 𝜏)

]
d2x1,

Σ(x, x1, 𝜏) = |x − x1|2 + [𝜁 (x) − 𝜁 (x1) + 𝜏]2,

(4)

in the three-dimensional geometry. Here, PC = 𝜌V∕(2DC) and PT = 𝜌V∕(2DT) are the solutal (chemical) and thermal
Péclet numbers, respectively; DC is the diffusion coefficient; DT is the thermal diffusivity; k0 stands for the equilibrium
segregation coefficient; and Ci = Cl∞ + IC

𝜁
is the concentration at the solid–liquid interface. Note that the variables in

integrals (3) and (4) are dimensionless5-7 (the dimensional form can be found by means of the characteristic length 𝜌).
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3 ANALYTICAL SOLUTIONS

3.1 Parabolic/paraboloidal growth shapes
First, let us seek for a solution of the boundary integral equation (1) in the form of a quadratic function in the
two-dimensional geometry as

𝜁 (x) = ax2 + bx + c, (5)

where a, b, and c represent the constant coefficients and a < 0 if the branches of the parabola are directed downwards.
Substituting this function into the integral IT

𝜁
from Equation (3) and changing the variable of integration (𝜔 instead of 𝜏) as

𝜔 = (x − x1)2

2𝜏
,

we get

IT
𝜁
= PT

2𝜋

∞

∫
0

d𝜔
𝜔

∞

∫
−∞

exp
[
−PT𝜔

(
1 +

(
a(x + x1) + b + x − x1

2𝜔

)2
)]

dx1. (6)

Now introducing new variable

z = −
√

PT𝜔
(

a(x + x1) + b + x − x1

2𝜔

)
,

one can evaluate integral (6) with respect to x1 and obtain

IT
𝜁
= −

√
PT

2
√
𝜋

∞

∫
0

exp (−PT𝜔) d𝜔√
𝜔(a𝜔 − 1∕2)

. (7)

This integral can be easily evaluated if a = 0 as

IT
𝜁
= 1, a = 0. (8)

Here, the following expression is taken into account13:

∞

∫
0

exp(−q𝛼)√
𝛼

d𝛼 =
√

𝜋

q
, q > 0. (9)

Let us now consider the case a ≠ 0 and bring integral (7) into a form that is tabulated

IT
𝜁
= 1 −

√
PT

𝜋
a

∞

∫
0

√
𝜔 exp (−PT𝜔) d𝜔

a𝜔 − 1∕2
. (10)

Now keeping in mind that13

∞

∫
u

√
𝛼 − u
𝛼

exp (−𝜇𝛼) d𝛼 =
√

𝜋

𝜇
exp (−𝜇u) − 𝜋

√
u erfc

(√
u𝜇
)
, u > 0, Re(𝜇) > 0,

we finally obtain from (10)

IT
𝜁
=
⎧⎪⎨⎪⎩
√

− 𝜋PT
2a

exp
(
− PT

2a

)
erfc

(√
− PT

2a

)
, a < 0

1, a = 0
. (11)
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Setting a = −1∕2, we have from (11) the previously found result6,8

IT
𝜁
= PT exp (PT)

∞

∫
1

exp (−PT𝜐) d𝜐√
𝜐

, (12)

which coincides with expressions (30)6 and (5.1).8
The solutal contribution IC

𝜁
entering in the boundary integral (1) can be easily evaluated by analogy with the integral

IT
𝜁

. To do this, we just replace PT by PC and take into account the constant factor (1 − k0)Ci. So, we have from expressions
(3) in the two-dimensional case

IC
𝜁
= (1 − k0)Ci𝑓 (PC), (13)

𝑓 (PC) =
⎧⎪⎨⎪⎩
√

− 𝜋PC
2a

exp
(
− PC

2a

)
erfc

(√
− PC

2a

)
, a < 0

1, a = 0
. (14)

Now substituting IC
𝜁

into expression Ci = Cl∞ + IC
𝜁

, we come to the interfacial concentration, which reads as

Ci =
Cl∞

1 − (1 − k0)𝑓 (PC)
. (15)

Note that expression (15) coincides with expressions (34)6 and (5.8)8 in the limiting case a = −1∕2.
Now we consider the three-dimensional case when the interface function represents a paraboloid of revolution given by

𝜁 (x, 𝑦) = a(x2 + 𝑦2) + b(x + 𝑦) + c, (16)

where a < 0, b, and c are the constant coefficients. To evaluate the thermal integral IT
𝜁

in (4) we replace the variables 𝜔
and y1 by 𝜏 and z1 by means of the following substitutions:

𝜔 = (x − x1)2

2𝜏
, 𝑦 − 𝑦1 = (x − x1)z1. (17)

As a result, the thermal integral simplifies as

IT
𝜁
= −1

2

(PT

𝜋

)3∕2
∞

∫
0

d𝜔√
𝜔

∞

∫
−∞

exp
[
−PT𝜔(1 + z2

1)
]

dz1

a + az2
1 − (2𝜔)−1

∞

∫
−∞

exp
(
−PT𝜔u2) du, (18)

where a < 0 and

u = a(x + x1) + b(1 + z1) + az1 [2𝑦 − (x − x1)z1] +
x − x1

2𝜔
.

Now evaluating two last integrals in (18) and taking into account that13

∞

∫
0

exp
(
−𝜇2v2) dv

v2 + 𝛽2 = 𝜋

2𝛽
erfc(𝛽𝜇) exp

(
𝛽2𝜇2) ,

we have

IT
𝜁
= −PT

a
exp

(
−PT

2a

) ∞

∫
1∕
√
−2a

erfc
[√

PTw
]

dw√
w2 + (2a)−1

, (19)
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where w =
√
𝜔 − (2a)−1. We use the method of differentiation and integration by the parameter 𝛼 =

√
PT to evaluate

integral (19). To do this, we consider the integral

J(𝛼) =

∞

∫
1∕
√
−2a

erfc [𝛼w] dw√
w2 + (2a)−1

.

Its differentiation gives

J′(𝛼) = −
exp

[
𝛼2 (1 + (2a)−1)]√

𝜋

∞

∫
1

exp
[
−𝛼2𝛾

]
d𝛾√

𝛾 − 1
,

where 𝛾 = w2 + 1 + (2a)−1. The last integral can be evaluated in terms of elementary functions as13
√
𝜋 exp

(
−𝛼2)∕𝛼.

Taking this into account, we obtain

J′(𝛼) = − 1
𝛼

exp
[
𝛼2

2a

]
.

Now keeping in mind that J(𝛼) → 0 as 𝛼 → ∞, we have after integration

J(𝛼) =

∞

∫
𝛼

exp
[
𝜈2

2a

]
d𝜈
𝜈
.

Now substituting this result into expression (19) and replacing the variable of integration as 𝜈 =
√

PT𝜂, we finally obtain
the thermal integral

IT
𝜁
= −PT

2a
exp

[
−PT

2a

] ∞

∫
1

exp
[

PT𝜂

2a

]
d𝜂
𝜂
. (20)

Note that expression (20) coincides with expressions (31)6 and (5.5)8 in the case a = −1∕2.
In the case a = 0, the thermal integral can be easily found from expression (18). Indeed, keeping in mind (9), we

conclude IT
𝜁
= 1 at a = 0. Thus, we have in the three-dimensional case

IT
𝜁
=
⎧⎪⎨⎪⎩
− PT

2a
exp

[
− PT

2a

] ∞

∫
1

exp
[

PT𝜂

2a

]
d𝜂
𝜂
, a < 0

1, a = 0

. (21)

To find the solutal integral IC
𝜁

in the three-dimensional growth geometry, we should again replace PT by PC and take
into consideration the constant factor (1 − k0)Ci. As a result, we have from expression (4) in the three-dimensional case

IC
𝜁
= (1 − k0)Cig(PC), (22)

g(PC) =
⎧⎪⎨⎪⎩
− PC

2a
exp

[
− PC

2a

] ∞

∫
1

exp
[

PC𝜂

2a

]
d𝜂
𝜂
, a < 0

1, a = 0

. (23)

Substitution of IC
𝜁

into Ci = Cl∞ + IC
𝜁

gives the interfacial concentration in the case of three-dimensional growth

Ci =
Cl∞

1 − (1 − k0)g(PC)
. (24)

Note that expression (24) again coincides with expressions (34)6 and (5.8)8 in the limiting case a = −1∕2.
The undercooling 𝛥 is defined by Equation (1). If we are dealing with the planar front when a = 0, the solid–liquid

interface curvature K(𝜁 ) becomes zero and Equation (1) is satisfied automatically. If the growth shape is parabolic
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FIGURE 1 A sketch of
two-dimensional angled dendrite (left
panel) and three-dimensional angled
dendrite (right panel), which are given
by equations 𝜁 (x) = a|x| and
𝜁(x, 𝑦) = a (|x| + |𝑦|), respectively, with
a = −5 [Colour figure can be viewed at
wileyonlinelibrary.com]

(or paraboloidal), the interface curvature, generally speaking, does not vanish. Therefore, such shapes can satisfy this
equation only approximately when the term proportional to K(𝜁 ) in Equation (1) is much less than other contributions.
This occurs, for example, if the factor dc∕𝜌 is small enough too. Keeping this in mind, we arrive at the undercooling of a
binary melt

Δ = 𝛽V + IT
𝜁
−

m0cp

Q

(
IC
𝜁
+ Cl∞

)
. (25)

3.2 Angled dendrite-like growth shapes
From the boundary layer model14 and from the cellular automata modeling,15 it is known that the dendrites can have an
angled shape of their tips. This angled shape of dendrite can also be obtained from the presently developing boundary
integral theory.

Consider the case of two-dimensional angled dendrite growing in a binary mixture. Its shape 𝜁 (x) = a|x|+b is illustrated
in Figure 1 (here, a < 0 and b are constants). For the sake of convenience, the thermal integral IT

𝜁
from (3) can be divided

into two parts as

IT
𝜁
= PT

∞

∫
0

d𝜏
2𝜋𝜏

⎛⎜⎜⎝
∞

∫
0

+

0

∫
−∞

⎞⎟⎟⎠ exp
[
−PT

2𝜏
Σ(x, x1, 𝜏)

]
dx1. (26)

At first, we evaluate the first part, where 𝜁 (x1) = ax1 + b, and 𝛴(x, x1, 𝜏) becomes

Σ(x, x1, 𝜏) = (x − x1)2 + [a(x − x1) + 𝜏]2.

Introducing the new variable 𝜔 = (x − x1)2∕(2𝜏) instead of 𝜏, then replacing x1 by u as u = −
√

PT𝜔
[
a + (x − x1)∕(2𝜔)

]
,

and omitting all mathematical manipulations, we arrive at the first contribution to IT
𝜁

in (26), which reads as

√
PT

2
√
𝜋

∞

∫
0

exp (−PT𝜔)√
𝜔

erfc
[
−
√

PT𝜔

(
a + |x|

2𝜔

)]
d𝜔. (27)

To evaluate the second contribution in (26), we should take into account that

𝜁 (x1) = −ax1 + b, u =
√

PT𝜔
(x − x1

2𝜔
− a
)
.

As a result, we come to the same contribution. Therefore, IT
𝜁

is equal to double expression (27) and reads as

IT
𝜁
=
√

PT

𝜋

∞

∫
0

exp (−PT𝜔)√
𝜔

erfc
[
−
√

PT𝜔

(
a + |x|

2𝜔

)]
d𝜔. (28)
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In the vicinity of dendritic vertex where |x| is small enough, we have

IT
𝜁
=
√

PT

𝜋

∞

∫
0

exp (−PT𝜔)√
𝜔

erfc
(
−a
√

PT𝜔
)

d𝜔 = 2
𝜋

arctan
(
−1

a

)
. (29)

The last expression (29) is obtained by the method of differentiation with respect to the parameter a, integration over
𝜔, and then over a with allowance for IT

𝜁
→ 0 as a → −∞.

Note that the integral IC
𝜁

defined in (3) may be found by analogy with IT
𝜁

as IC
𝜁
= (1 − k0)CiIT

𝜁
. Keeping in mind that

Ci = IC
𝜁
+ Cl∞, we come to

IC
𝜁
=

(1 − k0)Cl∞IT
𝜁

1 − (1 − k0)IT
𝜁

, a < 0. (30)

Let us estimate the integral IT
𝜁

from (4) in the three-dimensional case (see Figure 1) taking into account that 𝜁 (x, 𝑦) =
a (|x| + |𝑦|) + b (a < 0 and b are constants). To do this, we calculate four contributions of the integral IT

𝜁
in (4). The first

contribution corresponds to the following function 𝜁 (x, y) = a(x + y) + b (x > 0, y > 0), and

Σ(x, 𝑦) = (x − x1)2 + (𝑦 − 𝑦1)2 + [a (x − x1) + a (𝑦 − 𝑦1) + 𝜏]2.

Changing 𝜏 by 𝜔 and y1 by z1 using substitutions

𝜏 = (x − x1)2

2𝜔
, 𝑦1 = 𝑦 + (x − x1)z1,

we arrive at the first contribution in the form of

P3∕2
T

2𝜋3∕2

∞

∫
0

∞

∫
0

∞

∫
−𝑦∕(x−x1)

exp
{
−PT𝜔

[
1 + z2

1 +
(

a − az1 +
x − x1

2𝜔

)2
]}

dz1dx1
d𝜔√
𝜔
. (31)

Changing now z1 by u

u =
√

1 + a2z1 − 𝜒(x1, 𝜔), 𝜒(x1, 𝜔) =
a (a + (x − x1)∕(2𝜔))√

1 + a2
,

we get from (31)

PT

4𝜋
√

1 + a2

∞

∫
0

⎧⎪⎨⎪⎩
∞

∫
0

exp [−PT (1 + 𝜅(x1, 𝜔))𝜔] erfc

[
−
√

PT𝜔

(√
1 + a2𝑦

x − x1
+ 𝜒(x1, 𝜔)

)]⎫⎪⎬⎪⎭
d𝜔
𝜔

. (32)

Here, 𝜅(x1, 𝜔) = 𝜒2(x1, 𝜔)∕a2.
Three other terms to IT

𝜁
in expression (4) where x and y have various signs may be determined in the same manner. All

of these terms are identical to expression (32). Keeping this in mind, we multiply (32) by 4 and obtain the final expression.
Let us now pay our attention to the vertex zone where x → 0 and y → 0. In this case, we obtain from (32)

IT
𝜁
= PT

𝜋
√

1 + a2

∞

∫
0

⎧⎪⎨⎪⎩
∞

∫
0

exp [−PT (1 + 𝜅̃(x1, 𝜔))𝜔] erfc
[
−
√

PT𝜔𝜒(x1, 𝜔)
]

dx1

⎫⎪⎬⎪⎭
d𝜔
𝜔

, (33)

where

𝜒(x1, 𝜔) =
a (a − x1∕(2𝜔))√

1 + a2
, 𝜅̃(x1, 𝜔) =

𝜒2(x1, 𝜔)
a2 .
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Replacing the variables of integration accordingly to

𝜔′ = PT𝜔, x′1 = PTx1,

we find from (33)

IT
𝜁
= 1

𝜋
√

1 + a2

∞

∫
0

⎧⎪⎨⎪⎩
∞

∫
0

exp
[
−(1 + 𝜅′)𝜔′] erfc

[
−
√
𝜔′𝜒 ′

]
dx′1

⎫⎪⎬⎪⎭
d𝜔′

𝜔′ , (34)

𝜒 ′ (x′1, 𝜔′) = a
(

a − x′1∕(2𝜔
′)
)√

1 + a2
, 𝜅′ (x′1, 𝜔′) = 𝜒 ′2 (x′1, 𝜔′)

a2 , a < 0.

The integral IC
𝜁

can be evaluated by analogy with IT
𝜁

and takes the form

IC
𝜁
=

(1 − k0)Cl∞IT
𝜁

1 − (1 − k0) IT
𝜁

. (35)

Note that formulas (34) and (35) characterizing the three-dimensional angled crystal are independent of the Péclet
numbers PT and PC. Let us also especially emphasize that the melt undercooling is determined by Equation (1) with IT

𝜁

and IC
𝜁

given by expressions (29) and (30) in two-dimensional angled dendrite or (34) and (35) in three-dimensional angled
dendrite (see Figure 1).

4 CONCLUDING REMARKS

In summary, generalized analytical solutions for the parabolic/paraboloidal growing shapes and angled-like dendrites in
two/three spatial dimensions are found analytically on the basis of the boundary integral theory. These solutions allowed
us to get the thermal and concentration integrals entering in the Gibbs–Thomson condition (1) that determines the under-
cooling in a binary liquid ahead of the growing curved solid–liquid boundaries. The theory under consideration can be
extended to find a stable growth mode of angled-like dendrites in the spirit of previously developed solvability theory.9-11

In addition, this approach can be used in describing the same shapes of solid/liquid interfaces growing in various solidifi-
cation conditions (rapid crystallization, solidification with a mushy layer, ternary systems, convective mechanism of heat
and mass transfer, and solid–solid and liquid–liquid interface propagation may be mentioned16-25).

The presently developed theory can also be used in studying the morphology of more complex solid/liquid shapes and
interfaces propagating into undercooled one-component and binary liquids.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project number
FEUZ-2020-0057) and the German Space Center Space Management (contract number 50WM1941).

AUTHOR CONTRIBUTIONS

The authors contributed equally to the present research article.

CONFLICT OF INTEREST

The authors declare no potential conflict of interests.

ORCID

Dmitri V. Alexandrov https://orcid.org/0000-0002-6628-745X
Peter K. Galenko https://orcid.org/0000-0003-2941-7742

ALEXANDROV AND GALENKO 12065

https://orcid.org/0000-0002-6628-745X
https://orcid.org/0000-0002-6628-745X
https://orcid.org/0000-0003-2941-7742
https://orcid.org/0000-0003-2941-7742


REFERENCES
1. Nash GE. Capillary-limited, steady state dendritic growth. Part I. Theoretical development. NRL Report. 1974;1974;7679.
2. Nash GE, Glicksman ME. Capillary-limited steady-state dendritic growth I. Theoretical development. Acta Metall. 1974;22:1283-1290.
3. Langer JS, Turski LA. Studies in the theory of interface stability—I. Stationary symmetric model. Acta Metall. 1977;25:1113-1119.
4. Langer JS. Studies in the theory of interface stability—II. Moving symmetric model. Acta Metall. 1977;25:1121-1137.
5. Brener EA, Melnikov VI. Pattern selection in two-dimensional dendritic growth. Adv Phys. 1991;40:53-97.
6. Alexandrov DV, Galenko PK. Boundary integral approach for propagating interfaces in a binary non-isothermal mixture. Physica A.

2017;469:420-428.
7. Alexandrov DV, Galenko PK. Selected mode for rapidly growing needle-like dendrite controlled by heat and mass transport. Acta Mater.

2017;137:64-70.
8. Galenko PK, Alexandrov DV, Titova EA. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into

binary systems. Phil Trans R Soc A. 2018;376:20170218.
9. Barbieri A, Langer JS. Predictions of dendritic growth rates in the linearized solvability theory. Phys Rev A. 1989;39:5314-5325.

10. Ben Amar M, Pelcé P. Impurity effect on dendritic growth. Phys Rev A. 1989;39:4263-4269.
11. Ben Amar M. Dendritic growth rate at arbitrary undercooling. Phys Rev A; 41:2080-2092.
12. Alexandrov DV, Galenko PK. The shape of dendritic tips. Phil Trans R Soc A. 2020;378:20190243.
13. Gradshteyn IM. Tables of Integrals, Series, and Products. New York: Academic Press; 2007.
14. Brener EA, Temkin DE. Dendritic growth at deep undercooling and transition to planar front. Europhys Lett. 1989;10:171-175.
15. Galenko PK, Krivilyov MD, Buzilov SV. Bifurcations in a sidebranch surface of a free-growing dendrite. Phys Rev E. 1997;55:611-619.
16. Alexandrov DV, Galenko PK, Toropova LV. Thermo-solutal and kinetic modes of stable dendritic growth with different symmetries of

crystalline anisotropy in the presence of convection. Phil Trans R Soc A. 2018;376:20170215.
17. Alexandrov DV, Bashkirtseva IA, Ryashko LB. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations. Phil Trans

R Soc A. 2018;376:20170216.
18. Alexandrov DV, Nizovtseva IG. On the theory of crystal growth in metastable systems with biomedical applications: protein and insulin

crystallization. Phil Trans R Soc A. 2019;377:20180214.
19. Karma A, Rappel WJ. Phase-field model of dendritic sidebranching with thermal noise. Phys Rev E. 1999;60:3614-3625.
20. Horvay G, Cahn JW. Dendritic and spheroidal growth. Acta Metall. 1961;9:695-705.
21. Alexandrov DV, Danilov DA, Galenko PK. Selection criterion of a stable dendrite growth in rapid solidification. Int J Heat Mass Trans.

2016;101:789-799.
22. Alexandrov DV, Galenko PK. Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow. Phys

Chem Chem Phys. 2015;17:19149-19161.
23. Danilov D, Nestler B. Dendritic to globular morphology transition in ternary alloy solidification. Phys Rev Lett. 2004;93:215501.
24. Alexandrova IV, Alexandrov DV. Dynamics of particulate assemblages in metastable liquids: a test of theory with nucleation and growth

kinetics. Phil Trans R Soc A. 2020;378:20190245.
25. Alexandrov DV, Galenko PK. Selection criterion of stable mode of dendritic growth with n-fold symmetry at arbitrary Pclet numbers with

a forced convection. In: Gutschmidt S, Hewett JN, Sellier M, eds. IUTAM Symposium on Recent Advances in Moving Boundary Problems in
Mechanics, IUTAM Bookseries 34.: Springer; 2019:203-215.

How to cite this article: Alexandrov DV, Galenko PK. Analytical solutions to the boundary integral equation:
a case of angled dendrites and paraboloids. Math Meth Appl Sci. 2021;44:12058–12066. https://doi.org/10.1002/
mma.6570

ALEXANDROV AND GALENKO12066

https://doi.org/10.1002/mma.6570
https://doi.org/10.1002/mma.6570

	Analytical solutions to the boundary integral equation: A case of angled dendrites and paraboloids
	Abstract
	1 INTRODUCTION
	2 THE MODEL
	3 ANALYTICAL SOLUTIONS
	3.1. Parabolic/paraboloidal growth shapes
	3.2. Angled dendrite-like growth shapes

	4 CONCLUDING REMARKS
	REFERENCES




