Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/111686
Title: Automatic Asbestos Control Using Deep Learning Based Computer Vision System
Authors: Zyuzin, V.
Ronkin, M.
Porshnev, S.
Kalmykov, A.
Issue Date: 2021
Publisher: MDPI
MDPI AG
Citation: Automatic Asbestos Control Using Deep Learning Based Computer Vision System / V. Zyuzin, M. Ronkin, S. Porshnev et al. // Applied Sciences (Switzerland). — 2021. — Vol. 11. — Iss. 22. — 10532.
Abstract: The paper discusses the results of the research and development of an innovative deep learning-based computer vision system for the fully automatic asbestos content (productivity) estimation in rock chunk (stone) veins in an open pit and within the time comparable with the work of specialists (about 10 min per one open pit processing place). The discussed system is based on the applying of instance and semantic segmentation of artificial neural networks. The Mask R-CNN-based network architecture is applied to the asbestos-containing rock chunks searching images of an open pit. The U-Net-based network architecture is applied to the segmentation of asbestos veins in the images of selected rock chunks. The designed system allows an automatic search and takes images of the asbestos rocks in an open pit in the near-infrared range (NIR) and processes the obtained images. The result of the system work is the average asbestos content (productivity) estimation for each controlled open pit. It is validated to estimate asbestos content as the graduated average ratio of the vein area value to the selected rock chunk area value, both determined by the trained neural network. For both neural network training tasks the training, validation, and test datasets are collected. The designed system demonstrates an error of about 0.4% under different weather conditions in an open pit when the asbestos content is about 1.5–4%. The obtained accuracy is sufficient to use the system as a geological service tool instead of currently applied visual-based estimations. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords: ASBESTOS CONTENT CONTROL
COMPUTER VISION SYSTEMS
DEEP LEARNING
OBJECT DETECTION
SEMANTIC SEGMENTATION
URI: http://elar.urfu.ru/handle/10995/111686
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85119255658
WOS ID: 000728063500001
PURE ID: 28944607
ISSN: 2076-3417
DOI: 10.3390/app112210532
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85119255658.pdf55,81 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.