Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/111536
Title: | A Long-wave Action of Spin Hamiltonians and the Inverse Problem of the Calculus of Variations |
Authors: | Bostrem, I. G. Ovchinnikov, A. S. Egorov, R. F. |
Issue Date: | 2001 |
Publisher: | Elsevier Elsevier BV |
Citation: | Bostrem I. G. A Long-wave Action of Spin Hamiltonians and the Inverse Problem of the Calculus of Variations / I. G. Bostrem, A. S. Ovchinnikov, R. F. Egorov // Physics Letters, Section A: General, Atomic and Solid State Physics. — 2001. — Vol. 279. — Iss. 1-2. — P. 33-37. |
Abstract: | We suggest a method of derivation of the long-wave action of the model spin Hamiltonians using the non-linear partial differential equations of motions of the individual spins. According to the Vainberg's theorem the set of these equations are (formal) potential if the symmetry analysis for the Frechet derivatives of the system is true. The case of Heisenberg (anti)ferromagnets is considered. It is shown the functional whose stationary points are described by the equations coincides with the long-wave action and includes the non-trivial topological term (Berry phase). © 2001 Elsevier Science B.V. |
Keywords: | BERRY PHASE LONG-WAVE ACTION CALCULATIONS EQUATIONS OF MOTION FRUITS HAMILTONIANS BERRY PHASE CALCULUS OF VARIATIONS FRECHET DERIVATIVE LONG WAVES NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS SPIN HAMILTONIAN STATIONARY POINTS SYMMETRY ANALYSIS INVERSE PROBLEMS FERROMAGNETIC MATERIAL ACCELERATION ARTICLE MATHEMATICAL ANALYSIS MOLECULAR DYNAMICS PHYSICS THEORY WAVEFORM |
URI: | http://elar.urfu.ru/handle/10995/111536 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 0035931258 |
WOS ID: | 000166706700007 |
PURE ID: | 8477185 |
ISSN: | 0375-9601 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-0035931258.pdf | 101,38 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.