Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111536
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Bostrem, I. G. | en |
dc.contributor.author | Ovchinnikov, A. S. | en |
dc.contributor.author | Egorov, R. F. | en |
dc.date.accessioned | 2022-05-12T08:18:54Z | - |
dc.date.available | 2022-05-12T08:18:54Z | - |
dc.date.issued | 2001 | - |
dc.identifier.citation | Bostrem I. G. A Long-wave Action of Spin Hamiltonians and the Inverse Problem of the Calculus of Variations / I. G. Bostrem, A. S. Ovchinnikov, R. F. Egorov // Physics Letters, Section A: General, Atomic and Solid State Physics. — 2001. — Vol. 279. — Iss. 1-2. — P. 33-37. | en |
dc.identifier.issn | 0375-9601 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111536 | - |
dc.description.abstract | We suggest a method of derivation of the long-wave action of the model spin Hamiltonians using the non-linear partial differential equations of motions of the individual spins. According to the Vainberg's theorem the set of these equations are (formal) potential if the symmetry analysis for the Frechet derivatives of the system is true. The case of Heisenberg (anti)ferromagnets is considered. It is shown the functional whose stationary points are described by the equations coincides with the long-wave action and includes the non-trivial topological term (Berry phase). © 2001 Elsevier Science B.V. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en1 |
dc.publisher | Elsevier BV | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Phys Lett Sect A Gen At Solid State Phys | 2 |
dc.source | Physics Letters, Section A: General, Atomic and Solid State Physics | en |
dc.subject | BERRY PHASE | en |
dc.subject | LONG-WAVE ACTION | en |
dc.subject | CALCULATIONS | en |
dc.subject | EQUATIONS OF MOTION | en |
dc.subject | FRUITS | en |
dc.subject | HAMILTONIANS | en |
dc.subject | BERRY PHASE | en |
dc.subject | CALCULUS OF VARIATIONS | en |
dc.subject | FRECHET DERIVATIVE | en |
dc.subject | LONG WAVES | en |
dc.subject | NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS | en |
dc.subject | SPIN HAMILTONIAN | en |
dc.subject | STATIONARY POINTS | en |
dc.subject | SYMMETRY ANALYSIS | en |
dc.subject | INVERSE PROBLEMS | en |
dc.subject | FERROMAGNETIC MATERIAL | en |
dc.subject | ACCELERATION | en |
dc.subject | ARTICLE | en |
dc.subject | MATHEMATICAL ANALYSIS | en |
dc.subject | MOLECULAR DYNAMICS | en |
dc.subject | PHYSICS | en |
dc.subject | THEORY | en |
dc.subject | WAVEFORM | en |
dc.title | A Long-wave Action of Spin Hamiltonians and the Inverse Problem of the Calculus of Variations | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.identifier.scopus | 0035931258 | - |
local.contributor.employee | Bostrem, I.G., Department of Theoretical Physics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federation; Ovchinnikov, A.S., Department of Theoretical Physics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federation; Egorov, R.F., Department of Theoretical Physics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federation | en |
local.description.firstpage | 33 | - |
local.description.lastpage | 37 | - |
local.issue | 1-2 | - |
local.volume | 279 | - |
dc.identifier.wos | 000166706700007 | - |
local.contributor.department | Department of Theoretical Physics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federation | en |
local.identifier.pure | 8477185 | - |
local.identifier.eid | 2-s2.0-0035931258 | - |
local.identifier.wos | WOS:000166706700007 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-0035931258.pdf | 101,38 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.