Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111340
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBelozerov, A. S.en
dc.contributor.authorKatanin, A. A.en
dc.contributor.authorAnisimov, V. I.en
dc.date.accessioned2022-05-12T08:16:32Z-
dc.date.available2022-05-12T08:16:32Z-
dc.date.issued2021-
dc.identifier.citationBelozerov A. S. Itinerant Magnetism of Chromium under Pressure: A DFT+DMFT Study / A. S. Belozerov, A. A. Katanin, V. I. Anisimov. — DOI 10.21538/0134-4889-2020-26-3-23-31 // Journal of Physics Condensed Matter. — 2021. — Vol. 33. — Iss. 38. — 385601.en
dc.identifier.issn0953-8984-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111340-
dc.description.abstractWe consider electronic and magnetic properties of chromium, a well-known itinerant antiferromagnet, by a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT). We find that electronic correlation effects in chromium, in contrast to its neighbors in the periodic table, are weak, leading to the quasiparticle mass enhancement factor m∗/m ≈ 1.2. Our results for local spin-spin correlation functions and distribution of weights of atomic configurations indicate that the local magnetic moments are not formed. Similarly to previous results of DFT at ambient pressure, the non-uniform magnetic susceptibility as a function of momentum possesses close to the wave vector Q H = (0, 0, 2π/a) (a is the lattice constant) sharp maxima, corresponding to Kohn anomalies. We find that these maxima are preserved by the interaction and are not destroyed by pressure. Our calculations qualitatively capture a decrease of the Néel temperature with pressure and a breakdown of itinerant antiferromagnetism at pressure of ∼9 GPa in agreement with experimental data, although the Néel temperature is significantly overestimated because of the mean-field nature of DMFT. © 2021 IOP Publishing Ltd.en
dc.description.sponsorshipThe authors are grateful to D Volkova for the help with Wannier functions and also to D Gazizova and S Streltsov for useful discussions. The DFT + DMFT calculations were supported by Russian Science Foundation (Project 19-12-00012). The calculations of the particle–hole bubble were supported by the Ministry of Science and Higher Education of the Russian Federation (theme ‘Electron’ No. AAAA-A18-118020190098-5).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherIOP Publishing Ltden1
dc.publisherIOP Publishingen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-12-00012en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ Phys Condens Matter2
dc.sourceJournal of Physics Condensed Matteren
dc.subjectCHROMIUMen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.subjectDYNAMICAL MEAN-FIELD THEORYen
dc.subjectELECTRON CORRELATIONSen
dc.subjectITINERANT MAGNETISMen
dc.subjectANTIFERROMAGNETIC MATERIALSen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.subjectDISTRIBUTION FUNCTIONSen
dc.subjectMAGNETIC MOMENTSen
dc.subjectMAGNETIC SUSCEPTIBILITYen
dc.subjectMEAN FIELD THEORYen
dc.subjectATOMIC CONFIGURATIONen
dc.subjectELECTRONIC AND MAGNETIC PROPERTIESen
dc.subjectELECTRONIC CORRELATION EFFECTSen
dc.subjectITINERANT ANTIFERROMAGNETISMen
dc.subjectITINERANT ANTIFERROMAGNETSen
dc.subjectLOCAL MAGNETIC MOMENTSen
dc.titleItinerant Magnetism of Chromium under Pressure: A DFT+DMFT Studyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.rsi46964223-
dc.identifier.doi10.1088/1361-648X/ac1090-
dc.identifier.scopus85111580841-
local.contributor.employeeBelozerov, A.S., M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation; Katanin, A.A., M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation; Anisimov, V.I., M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.issue38-
local.volume33-
dc.identifier.wos000675220800001-
local.contributor.departmentM. N. Miheev Institute of Metal Physics, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation; Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.identifier.pure22989480-
local.description.order385601-
local.identifier.eid2-s2.0-85111580841-
local.fund.rsf19-12-00012-
local.identifier.wosWOS:000675220800001-
local.identifier.pmid34198275-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85111580841.pdf466,86 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.