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Abstract. We consider electronic and magnetic properties of chromium, a well-

known itinerant antiferromagnet, by a combination of density functional theory (DFT)

and dynamical mean-field theory (DMFT). We find that electronic correlation effects

in chromium, in contrast to its neighbours in the periodic table, are weak, leading

to the quasiparticle mass enhancement factor m∗/m ≈ 1.2. Our results for local

spin-spin correlation functions and distribution of weigths of atomic configurations

indicate that the local magnetic moments are not formed. Similarly to previous results

of DFT at ambient pressure, the non-uniform magnetic susceptibility as a function

of momentum possesses close to the wave vector QH = (0, 0, 2π/a) (a is the lattice

constant) sharp maxima, corresponding to Kohn anomalies. We find that these maxima

are preserved by the interaction and are not destroyed by pressure. Our calculations

qualitatively capture a decrease of the Néel temperature with pressure and a breakdown

of itinerant antiferomagnetism at pressure of ∼9 GPa in agreement with experimental

data, although the Néel temperature is significantly overestimated because of the mean-

field nature of DMFT.

http://arxiv.org/abs/2103.17133v2
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1. Introduction

Chromium represents a well-known magnet possessing spin-density-wave order and

having substantial Néel temperature TN ≈ 300 K at ambient pressure, see review [1] and

references therein. The magnetic order in chromium was shown to be incommensurate

with the wave vector Q = (2π/a)(0, 0, 1−δ) at not too low temperatures (a is the lattice

constant) with weakly temperature dependent incommensurability δ ∼ 0.05 [2]. Already

in early study of Ref. [3] it was noted that the anomaly of resistivity, which occurs at

the Néel temperature, is shifted to lower temperatures with applied pressure. Recent

studies at high pressures [4,5] have shown that the antiferromagnetism is (almost) fully

suppressed by pressure, and at a critical pressure pc ≈ 9.5 GPa the quantum phase

transition to paramagnetic state occurs.

Soon after the discovery of antiferromagnetism of chromium it was proposed that

it occurs due to nesting of the Fermi surface [6, 7]. Despite the simplicity of the

corresponding mean-field theory, the non-local correlations yield non-trivial physical

effects [8–10]. It was however emphasized [11,12] that imperfectness of the nesting is an

important factor, which changes essentially physical picture of the origin of spin density

wave. Namely, a cusp-type maximum of the non-uniform susceptibility at some wave

vector Q may arise due to the so-called Kohn points of the Fermi surface separated by

the wave vector Q. The Kohn points are the points, having opposite Fermi velocities,

and they yield local maximum of non-uniform susceptibility at the momentum Q if the

signs of the effective electronic masses at these points are opposite in two perpendicular

directions [11, 12]. Due to electronic interaction, this maximum, having non-analytic

momentum dependence, may yield spin density wave with the wave vector Q. It was

argued recently that Kohn points may form lines, located on the Fermi surfaces [13,14].

These lines are preserved by the interaction effects [13], and seem to be present in

chromium [14, 15].

The electronic structure of Cr has been extensively studied within density functional

theory (DFT) [16–22]. In particular, the shape of the Fermi surface sheets was studied

and their approximately nested parts were identified by ab initio methods [16–18, 22].

Apart from that, the momentum dependence of particle-hole bubble was investigated

[23,24] and magnetic ground state was described [25–27]. However, the DFT alone does

not give a possibility to extract magnetic transition temperatures. It also has difficulties

in description of paramagnetic state and electron correlation effects arising in partially-

filled d bands. An accurate treatment of many-body effects, including correlations at

finite temperature, can be performed, e.g., by a combination of DFT and dynamical

mean-field theory (DMFT) [28, 29]. This combination, called DFT+DMFT [30], was

previously applied to describe magnetism of iron [31–36], nickel [31,36], and recently to

ZrZn2, a prototypical weak ferromagnet [37]. These studies showed that the effect of

electronic interaction is essential for the formation of local magnetic moments and their

screening.

In this paper, we study the electronic and magnetic properties of paramagnetic
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Cr at pressures up to 10 GPa within the DFT+DMFT approach. In contrast to the

weak ferromagnet ZrZn2 we find that magnetism in chromium is purely itinerant and

no local magnetic moments are formed. Using the supercell approach, we extract the

Néel temperature, which decreases with pressure, but found to be overestimated because

of mean-field nature of DMFT approach. We find a breakdown of antiferromagnetism

at 9 GPa in agreement with experimental data. However, the obtained quantum phase

transition is of the first kind, which, as we argue, reflects deficiency of supercell approach.

2. Computational details

We have performed DFT calculations using the pseudopotential plane-wave method

implemented in the Quantum-ESPRESSO package [38]. The Vanderbilt ultrasoft

pseudopotential with the Perdew-Burke-Ernzerhof form of generalized gradient

approximation was used. The convergence threshold for total energy was set to 10−6 Ry.

The integration in the reciprocal space was performed using 20×20×20 k-point mesh in

all calculations except those of momentum-dependent susceptibility, where 40×40×40

mesh was employed. The calculations were carried out with the experimental lattice

constants taken at the corresponding pressures [4]. We also have computed the pressure

dependence of the lattice constant within DFT by fitting to the third-order Birch-

Murnaghan equation of state. The obtained lattice constant is found to be less than

the experimental one by 0.035 Å at ambient pressure and 0.018 Å at the pressure of

10 GPa. We have checked that this difference does not qualitatively affect our results.

For DMFT calculations we have constructed a basis of maximally-localised Wannier

functions (MLWFs) [39] by means of Wannier90 code [40]. To take into account the

hybridization of 3d states with 4s and 4p ones, we include all of them in our Wannier

function basis.

We parametrize the Coulomb interaction for d shell via Slater integrals F 0,

F 2, and F 4 linked to the Hubbard parameter U ≡ F 0 and Hund’s rule coupling

JH ≡ (F 2 + F 4)/14 (details can be found in reference [41]). In our calculations we

adopt JH = 0.9 eV, which is commonly used for 3d metals [31–35, 42, 43]. We also

adopt U = 2.5 eV, which is close to U ≈ Ueff + JH = 2.9± 0.4 eV extracted from the

resonant photoemission spectra [44] and U ∼ 2.8− 3 eV obtained by the constrained

random-phase approximation in the MLWFs basis [45, 46].

Our DMFT calculations have been performed using the AMULET code [47]. To

account for the electronic interactions already described by DFT, we use the around

mean-field form of double-counting correction, evaluated from the self-consistently

determined local occupations. We also verified that the fully localized form of double-

counting correction leads to similar results with a slightly less (∼0.04) filling of d states.

To compute the density of states, we perform the analytical continuation of self-energy

to real-energy range by using the Padé approximants [48].

The impurity problem has been solved by the hybridization expansion continuous-

time quantum Monte Carlo method [49] with the density-density form of Coulomb
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Figure 1. Orbital projected density of 3d states (DOS) at ambient pressure (labeled

as p = 0 GPa, top panel) and total DOS (bottom panel) at ambient pressure and

p = 10 GPa as obtained within non-spin-polarised DFT method and DFT+DMFT

method at temperature T = 193 K. The Fermi level is at zero energy.

interaction. This form of Coulomb interaction is employed in most part of material-

specific DMFT calculations and corresponds to the Ising (Z2) symmetry of Hund’s

exchange. Although this approximation affects the electronic properties near the Mott

transition [50] and results in overestimation of the Curie temperature in strong magnets

[36, 43, 50], it drastically reduces the computational costs making such calculations

feasible. Moreover, it yields qualitatively- and semiquantitatively correct results for

strong magnets, and expected to be applicable to the weak magnets as well.

3. Results and discussion

3.1. Electronic and local magnetic properties

Our DFT+DMFT calculations yield the d-states filling of 4.02, which is almost

independent of pressure up to 10 GPa. At the same time, orbitals of t2g and eg symmetry

have different fillings of 0.91 and 0.64, respectively. The former is not far from half-

filling, that may lead to significant correlation effects [51]. However, the density of states

(DOS), shown in figure 1, is low at the Fermi level for states of both symmetry. Moreover,

the peak in density of eg states is relatively far from the Fermi level (comparing, e.g.,

to α-iron, where it plays an important role in formation of well-localized magnetic
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Figure 2. Momentum resolved spectral function obtained within DFT+DMFT

method at ambient pressure and temperature T = 193 K. The Fermi level is at zero

energy.

moments [32, 34, 35]). As seen in figure 1, dynamical correlation effects considered in

DMFT lead to a slight renormalization of states near the Fermi level, decreasing the

distance to the eg peak to 1.1 eV compared to 1.4 eV in DFT at ambient pressure. As

seen in the bottom panel of figure 1, the shape of the DOS obtained within DFT+DMFT

is weakly affected by pressure of 10 GPa, albeit a slight shift of the position of the peaks

and broadening of the bandwidth is observed.

In figure 2 we present momentum resolved spectral functions A(k, ν) =

−(1/π)
∑

m ImGmm
k (ν) where k is the momentum, Gk(ν) is the one-particle Green’s

function, which is a matrix in the Wannier function space. The Green’s function was

obtained using the Wannier-projected Hamiltonian and self-energy continued to the

real frequency axis using Páde approximants. One can see that near the Fermi level the

spectral functions have a form of relatively narrow peaks, corresponding to well defined

quasiparticles.

In figure 3 we present the imaginary part of electronic self-energy Σ as a function of

imaginary frequency iν at ambient pressure and p = 10 GPa. The obtained frequency

dependencies of the self-energy have a Fermi-liquid-like form with a small quasiparticle

damping (i.e., inverse quasiparticle lifetime), and have a similar shape and magnitude

at temperatures 193 and 1160 K. To estimate the strength of electronic correlations,

we compute the quasiparticle mass enhancement m∗/m=1 − [d ImΣ(iν)/dν]ν→0
using

Padé approximants for self-energy. At ambient pressure and temperature of 193 K we

obtain m∗/m of 1.18 and 1.16 for t2g and eg states, respectively. Upon compression of
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Figure 3. Imaginary part of electronic self-energy Σ as a function of imaginary

frequency iν (main panel) obtained by DFT+DMFT at pressures p = 0, 10 GPa and

temperature T = 193 K. Inset: quasiparticle mass enhancement m∗/m as a function

of pressure.
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Figure 4. Local spin-spin correlation functions in the imaginary-time (left panel)

and real-frequency (right panel) domains calculated by DFT+DMFT method at inverse

temperature β = 7 eV−1. The obtained correlation functions for chromium at pressures

p = 0 and p = 10 GPa are compared with that for α-Fe at ambient pressure [52].

the lattice, the calculated ratio m∗/m decreases monotonically as shown in the inset of

figure 3, that can be explained by an increase of the bandwidth. We have also checked

that the correlation effects weakly depend on temperature. In particular, the difference

of averaged m∗/m at these temperatures is only about 0.01. The obtained values of

m∗/m indicate that correlation effects in chromium are rather weak.

This is also confirmed by the study of local dynamic susceptibility, expressed as

a correlation function of local spin operators χloc(τ) = 〈Sz(τ)Sz(0)〉, where Sz is the

z-component of the local spin operator and τ is the imaginary time. In figure 4 we

show the dependence χloc(τ) at inverse temperature β = 1/T = 7 eV−1, together with

the real part of χloc(ω), obtained by Fourier transform and analytical continuation to
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Figure 5. Statistical weights of atomic configurations obtained within quantumMonte

Carlo at pressures p = 0, 10 GPa and temperature T = 193 K. Inset: statistical weights

of absolute value of z-projection of spin Sz.

real frequency ω. One can see that the local susceptibility shows strong imaginary

time dependence, which drops almost to zero at τ ∼ β/2 and the corresponding plateau

in real frequency dependence, which shows absence of local magnetic moments (cf.

the corresponding dependencies for such strong magnet, as iron). Accordingly, the

local static susceptibility χ0
loc =

∫ β

0
χloc(τ)dτ (not shown) is only weakly temperature

dependent. Therefore, one can characterize chromium as a weak itinerant magnet.

To summarize our study of local electronic and magnetic properties, in figure 5

we present the statistical weights of various electronic and magnetic configurations.

Although the maximum weight is achieved for the electronic configuration with

occupation n = 4 (in agreement with obtained average occupation), this maximum

is rather broad, such that the actual occupation of various configurations varies in the

range 2 ≤ n ≤ 6. Likewise, the spin projection has maximal weight at |Sz| = 1/2, but

varies in the range |Sz| ≤ 2. This confirms once more the characterization of chromium

as a weak magnet without formed local moments.

3.2. Non-local magnetic properties

To calculate the Néel temperature, we approximate the magnetic wave vector

by QH = (0, 0, 2π/a) and construct a supercell for modeling an antiferrromagnetic

order corresponding to this wave-vector. In particular, our supercell contains two

nearest-neighbor atoms at (0, 0, 0) and (a/2, a/2, a/2) in Cartesian coordinates. The

corresponding lattice vectors are {a, 0, 0}, {0, a, 0} and {0, 0, a}. The constructed

supercell allows us to consider two magnetic sublattices and calculate the response to

a non-uniform magnetic field, which site dependence HRj
= H0 cos(QHRj) corresponds

to the antiferromagnetic order. In other words, we compute the sublattice magnetic

susceptibility χsub as a response to a small staggered magnetic field H0 introduced in

the DMFT part. In the calculations we have used the magnetic field corresponding to
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splitting of the single-electron energies up to 5 meV, which was checked to provide a

linear response. The magnetic transition temperatures are obtained from the onset of

spontaneous sublattice magnetization.
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Figure 6. Inverse sublattice susceptibility as a function of temperature obtained by

the DFT+DMFT method at various pressures. The χ−1

sub
= 0 points are obtained from

the onset of spontaneous sublattice magnetization.

The obtained temperature dependence of inverse sublattice susceptibility and

corresponding magnetic transition temperatures are shown in figure 6. The obtained

Néel temperature at ambient pressure (1500 K) is strongly overestimated in comparison

with the experimental value TN ≈ 300 K. This is in a sharp contrast with strong

magnets, such as iron [31, 32, 34, 35], where overestimation of Curie temperature is

only moderate (1.5 to 2 times) and partly originates from the Ising symmetry of Hund

exchange [36,43]. The remaining part of overestimation is due to the mean-field nature

of DMFT approach. For systems with local magnetic moments, in particular strong
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Figure 7. Relative value of Néel temperature as a function of pressure obtained by

the DFT+DMFT method in comparison with experimental data [5].
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magnets, such as iron, this implies mean-field approximation to the effective Heisenberg

model (cf. Refs. [34, 35]), which is known to overestimate the Curie temperature by a

factor 1.3-1.5 depending on the coordination number. At the same time, in the regime

of weak electronic correlations, as obtained in section 3.1, DMFT performs mean-field-

like treatment of itinerant magnetic degrees of freedom. In view of the similarity of

diagrammatic structure of DMFT magnetic susceptibility to that in RPA approach [53],

the above mentioned mean-field-like treatment is expected to strongly overestimate

magnetic transition temperatures similarly to Stoner (Overhauser) theory [54]. Yet,

some effects of electronic correlations are accounted by the DMFT approach, as can

be seen, e.g., from the close to linear temperature dependence of inverse susceptibility

far from quantum phase transition. The obtained pressure dependence of reduced Néel

temperature TN(p)/TN(0) is shown and compared to the experimental data of Ref. [5] in

figure 7. Similarly to the experimental data, the obtained dependence TN(p) is almost

linear in a broad pressure range, and then sharply drops to zero at a critical pressure

pc = 9 GPa, which is close to the experimental value of 9.5 GPa. The obtained sharp

drop of TN(p) indicates a first-order quantum phase transition in the considered supercell

DMFT approach.

0

1

2

χ0 q
 (

µ B2
/e

V
)

P Γ H P N Γ

0

1

2

χ0 q
 (

µ B2
/e

V
)

p = 0 GPa

p = 10 GPa

d

d

t2g

t2g

eg

eg

t2g− eg

t2g− eg

Figure 8. Momentum dependence of the particle-hole bubble (Eq. 1) calculated within

DFT (dashed lines) and DFT+DMFT (solid lines) under ambient pressure (top panel)

and p = 10 GPa (bottom panel) at temperature T = 193 K. The contribution from all d

orbitals (black lines) and partial t2g (red lines), eg (blue lines), and t2g-eg contributions

(green lines) are present.
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Figure 9. Temperature dependence of the particle-hole bubble (Eq. 1) at the staggered

wave vectorQH, calculated within DFT+DMFT at pressures p = 0, 10 GPa, compared

to that at the wave vector of the maximum of the bubble Qmax.

To understand the role of magnetic correlations with various wave vectors, we

study the momentum-dependence of static (zero frequency) magnetic susceptibility. In

particular, we compute the lowest-order (with respect to the vertex corrections) non-

uniform magnetic susceptibility, which corresponds to the particle-hole bubble diagram

and can be written as

χ0
q = −(2µ2

B/β)
∑

k,νn

Tr [Gk(iνn)Gk+q(iνn)] , (1)

where µB is the Bohr magneton, νn = (2n + 1)πT are the fermionic Matsubara

frequencies, the trace is taken over the orbital indices of Wannier functions of d symmetry

(for more details see Refs. [29, 53]). In figure 8 we show the momentum dependence

of χ0
q calculated using non-interacting (DFT) and interacting (DFT+DMFT) Green’s

functions. One can see that sharp peak near the wave vector QH, obtained previously

in DFT at ambient pressure [14, 23, 24], is preserved in DMFT, which accounts for the

interaction effects, similarly to previous study of the single-band Hubbard model [13].

As it was discussed in Refs. [11–14], these sharp peaks originate from Kohn points (or

lines) of the Fermi surfaces. These are the points (or lines), connected by the wave vector

Qmax, corresponding to the peak position, and having opposite Fermi velocities in two

perpendicular directions. Since the sharp maximum of the susceptibility is preserved

with changing pressure, these points (or lines), corresponding to “local nesting” regions,

are not destroyed with applying pressure (see also Ref. [15]).

The obtained shape of the momentum dependence of the bubble allows one to

explain the first order phase transition, obtained in the considered supercell DMFT

approach with applying pressure. For that, we note that the first order transition occurs

since the minimum of the dependence χ−1

sub
(T ) is not shifted to T = 0 K with applied

pressure (see figure 6). At the same time the staggered susceptibility decreases, such

that at the critical pressure pc the solution of the equation χ−1

sub
(T ) = 0 disappears. To
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understand the origin of this behavior, in figure 9 we plot the temperature dependence of

the bubble at the pressures p = 0 and 10 GPa and wave vectors q = QH and Qmax. One

can see that the temperature dependence of the bubble at the wave vector QH is also

non-monotonic, similarly to the staggered susceptibility of figure 6. This behaviour is

natural, since the non-local susceptibility is related to the frequency-resolved bubble via

the Bethe-Salpeter equation [29], containing local vertices. At the same time, the bubble

at the wave vector Qmax shows almost linear monotonic behavior at small temperatures,

which is typical for systems with Kohn points (lines) at the Fermi surface [11,13,14], and

therefore it is substantially enhanced at low temperatures. This allows us to conclude

that in the corresponding temperature range T . TN (0)/3 the incommensurability of

magnetic order, not accounted in the considered supercell approach, becomes essential.

Therefore, we expect the replacement of the obtained first-order transition by a second-

order transition (happening at higher pressures) from incommensurate to paramagnetic

phase, when incommensurate correlations are taken into account. A similar result was

found in the previous static mean-field and slave boson studies of two- [55] and three-

dimensional [56] systems.

4. Conclusions

In summary, we have studied the electronic and magnetic properties of chromium within

DFT+DMFT approach. In electronic and local magnetic properties we find a quite weak

effect of electronic correlations: the self-energies have Fermi-liquid like form, local static

magnetic susceptibilities are only weakly temperature dependent, and the real part of

local dynamic susceptibility has a broad plateau as a function of real frequency. This

is in contrast to such 3d metals as vanadium, iron, cobalt, nickel, which are further

from the half-filling of d-states than chromium, but nevertheless show much stronger

many-body effects. The reason for the unusually weak correlations in chromium may be

in its electronic structure. Namely, the DOS at the Fermi level N(EF) has a dip, that

reduces the number of particle-hole excitations. Moreover, peaks of DOS, which may

be a source of stronger correlations, are quite distant from the Fermi level in chromium.

A somewhat similar to chromium shape of the DOS near the Fermi level is observed in

the ε-phase of iron. At the same time, ε-iron, in contrast to chromium, has short-lived

local magnetic moments [57], which likely occur because of a larger N(EF) and a closer

position of the peak of DOS to the Fermi level. The local moments in ε-iron are however

still only weakly formed and they are difficult to detect experimentally.

Our study of staggered susceptibility of chromium shows its non-monotonic

temperature dependence, which is also present in the particle-hole bubble. The

calculated Néel temperature decreases approximately linearly with applied pressure,

in agreement with the experimental data. We find a first-order magnetic transition at

applied pressure p ∼ 9 GPa. As we argue, however, this first-order transition occurs

because of the above mentioned non-monotonic dependence of staggered susceptibility

and neglect of incommensurate magnetic correlations, which can not be treated easily in
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considered supercell approach. We expect that account of these correlations will yield

the second-order phase transition.

In the light of these results, further studies of the non-local effects in chromium

are required. This can be performed, e.g. via the calculation of non-uniform

susceptibility in non-local extensions of DMFT [53]. In view of the required description

of low-temperature behavior of susceptibilities near quantum phase transition, these

calculations should be supplemented by efficient impurity solvers, which are able to

calculate vertex functions of multi-orbital models in the low temperature regime. The

suppression of the Néel temperature with respect to the results of DMFT can be also

further studied in the recently proposed approach [58].
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[44] Kaurila T, Väyrynen J and Isokallio M 1997 J. Phys.: Condens. Matter 9 6533

[45] Miyake T and Aryasetiawan F 2008 Phys. Rev. B 77 085122

[46] Note, that the cited value of Hubbard U accounts for the difference in parametrization of Coulomb

interaction in the present paper and in reference [45].

[47] Homepage of the AMULET code: http://amulet-code.org

[48] Vidberg H J and Serene J W 1977 J. Low Temp. Phys. 29 179

[49] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122

Werner P, Comanac A, de Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405

[50] Antipov A E, Krivenko I S, Anisimov V I, Lichtenstein A I and Rubtsov A N 2012 Phys. Rev. B

86 155107

[51] Werner P, Gull E, Troyer M and Millis A J 2008 Phys. Rev. Lett. 101 166405

[52] The spin-spin correlation function for α-iron was calculated by the DFT+DMFT method at inverse

temperature β = 7 eV−1 with interaction parameters U = 4 eV and JH = 0.9 eV. Details of

calculations are presented in reference [35].

[53] Rohringer G, Hafermann H, Toschi A, Katanin A A, Antipov A E, Katsnelson M I, Lichtenstein

A I, Rubtsov A N and Held K 2018 Rev. Mod. Phys. 90 025003

[54] Moriya T 1985 Spin Fluctuations in Itinerant Electron Magnetism (Berlin: Springer)

[55] Igoshev P A, Timirgazin M A, Katanin A A, Arzhnikov A K and Irkhin V Yu 2010 Phys. Rev. B

http://amulet-code.org


Itinerant magnetism of chromium under pressure: a DFT+DMFT study 14

81 094407

Igoshev P A, Zarubin A V, Katanin A A and Irkhin V Yu 2012 Journ. Magn. Magn. Mater. 324

3601

[56] Igoshev P A, Timirgazin M A, Gilmutdinov V F, Arzhnikov A K and Irkhin V Yu 2015 J. Phys.:

Condens. Matter 27 446002

Timirgazin M A, Igoshev P A, Arzhnikov A K and Irkhin V Yu 2016 J. Phys.: Condens. Matter

28 505601

Igoshev P A, Timirgazin M A, Arzhnikov A K, Antipin T V and Irkhin V Yu 2017 J. Magn. Magn.

Mater. 440 66

Timirgazin M A, Igoshev P A, Arzhnikov A K and Irkhin V Yu 2018 J. Magn. Magn. Mater. 459

311

Irkhin V Yu and Igoshev P A 2018 Phys. Met. Metallogr. 119 1267

[57] Belozerov A S, Katanin A A, Irkhin V Yu and Anisimov V I 2020 Phys. Rev. B 101 155126

[58] Rubtsov A N, Stepanov E A and Lichtenstein A I 2020 Phys. Rev. B 102 224423


	1 Introduction
	2 Computational details
	3 Results and discussion
	3.1 Electronic and local magnetic properties
	3.2 Non-local magnetic properties

	4 Conclusions

