Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111260
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMaksimov, V. I.en
dc.date.accessioned2022-05-12T08:15:28Z-
dc.date.available2022-05-12T08:15:28Z-
dc.date.issued2020-
dc.identifier.citationMaksimov V. I. On an Algorithmfor the Reconstruction of a Perturbation in a Nonlinear System / V. I. Maksimov // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 1. — P. 156-166.en
dc.identifier.issn0134-4889-
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111260-
dc.description.abstractA problem of reconstruction of an unknown perturbation in a system of nonlinear ordinary differential equations is considered. The methods of solution of such problems are well known. In this paper we study a problem with two peculiarities. First, it is assumed that the phase coordinates of the dynamical system are measured (with error) at discrete sufficiently frequent times. Second, the only information known about the perturbation acting on the system is that its Euclidean norm is square integrable; i.e., the perturbation can be unbounded. Since the exact reconstruction is impossible under these assumptions, we design a solution algorithm that is stable under information noise and computation errors. The algorithm is based on the combination of elements of the theory of ill-posed problems with the extremal shift method known in the theory of positional differential games. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen1
dc.publisherKrasovskii Institute of Mathematics and Mechanics UB RASen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTr. Inst. Mat. Meh. UrO RAN2
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectDYNAMIC RECONSTRUCTIONen
dc.subjectLINEAR CONTROL SYSTEMSen
dc.titleOn an Algorithmfor the Reconstruction of a Perturbation in a Nonlinear Systemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi42492200-
dc.identifier.doi10.21538/0134-4889-2020-26-1-156-166-
dc.identifier.scopus85090523742-
local.contributor.employeeMaksimov, V.I., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620083, Russian Federationen
local.description.firstpage156-
local.description.lastpage166-
local.issue1-
local.volume26-
dc.identifier.wos000544884900011-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation; Ural Federal University, Yekaterinburg, 620083, Russian Federationen
local.identifier.pure12459071-
local.identifier.eid2-s2.0-85090523742-
local.identifier.wosWOS:000544884900011-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85090523742.pdf211,38 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.