Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111219
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Hassan, T. S. | en |
dc.contributor.author | Othman Almatroud, A. | en |
dc.contributor.author | Al-Sawalha, M. M. | en |
dc.contributor.author | Odinaev, I. | en |
dc.date.accessioned | 2022-05-12T08:14:42Z | - |
dc.date.available | 2022-05-12T08:14:42Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Asymptotics and Hille-Type Results for Dynamic Equations of Third Order with Deviating Arguments / T. S. Hassan, A. Othman Almatroud, M. M. Al-Sawalha et al. // Symmetry. — 2021. — Vol. 13. — Iss. 11. — 2007. | en |
dc.identifier.issn | 2073-8994 | - |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111219 | - |
dc.description.abstract | The aim of this paper is to deduce the asymptotic and Hille-type criteria of the dynamic equations of third order on time scales. Some of the presented results concern the sufficient condition for the oscillation of all solutions of third-order dynamical equations. Additionally, compared with the related contributions reported in the literature, the Hille-type oscillation criterion which is derived is superior for dynamic equations of third order. The symmetry plays a positive and influential role in determining the appropriate type of study for the qualitative behavior of solutions to dynamic equations. Some examples of Euler-type equations are included to demonstrate the finding. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | en |
dc.description.sponsorship | Acknowledgments: This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi Arabia through project number RG-20 125. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en1 |
dc.publisher | MDPI AG | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Symmetry | 2 |
dc.source | Symmetry | en |
dc.subject | ASYMPTOTIC BEHAVIOR | en |
dc.subject | DYNAMIC EQUATIONS | en |
dc.subject | EULER-TYPE EQUATION | en |
dc.subject | HILLE-TYPE OSCILLATION CRITERIA | en |
dc.subject | TIME SCALES | en |
dc.title | Asymptotics and Hille-Type Results for Dynamic Equations of Third Order with Deviating Arguments | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/sym13112007 | - |
dc.identifier.scopus | 85118266226 | - |
local.contributor.employee | Hassan, T.S., Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il, 2440, Saudi Arabia, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt; Othman Almatroud, A., Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il, 2440, Saudi Arabia; Al-Sawalha, M.M., Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il, 2440, Saudi Arabia; Odinaev, I., Department of Automated Electrical Systems, Ural Power Engineering Institute, Ural Federal University, Yekaterinburg, 620002, Russian Federation | en |
local.issue | 11 | - |
local.volume | 13 | - |
dc.identifier.wos | 000807214000001 | - |
local.contributor.department | Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il, 2440, Saudi Arabia; Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt; Department of Automated Electrical Systems, Ural Power Engineering Institute, Ural Federal University, Yekaterinburg, 620002, Russian Federation | en |
local.identifier.pure | 28887932 | - |
local.description.order | 2007 | - |
local.identifier.eid | 2-s2.0-85118266226 | - |
local.identifier.wos | WOS:000807214000001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85118266226.pdf | 292,35 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.