Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111202
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Milstein, G. N. | en |
dc.contributor.author | Schoenmakers, J. G. M. | en |
dc.contributor.author | Spokoiny, V. | en |
dc.date.accessioned | 2022-05-12T08:14:15Z | - |
dc.date.available | 2022-05-12T08:14:15Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Milstein G. N. Forward and Reverse Representations for Markov Chains / G. N. Milstein, J. G. M. Schoenmakers, V. Spokoiny // Stochastic Processes and their Applications. — 2007. — Vol. 117. — Iss. 8. — P. 1052-1075. | en |
dc.identifier.issn | 0304-4149 | - |
dc.identifier.other | All Open Access, Bronze, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111202 | - |
dc.description.abstract | In this paper we carry over the concept of reverse probabilistic representations developed in Milstein, Schoenmakers, Spokoiny [G.N. Milstein, J.G.M. Schoenmakers, V. Spokoiny, Transition density estimation for stochastic differential equations via forward-reverse representations, Bernoulli 10 (2) (2004) 281-312] for diffusion processes, to discrete time Markov chains. We outline the construction of reverse chains in several situations and apply this to processes which are connected with jump-diffusion models and finite state Markov chains. By combining forward and reverse representations we then construct transition density estimators for chains which have root-N accuracy in any dimension and consider some applications. © 2006 Elsevier Ltd. All rights reserved. | en |
dc.description.sponsorship | This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 Economic Risk, and the DFG Research Center matheon in Berlin. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier BV | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Stoch. Processes Appl. | 2 |
dc.source | Stochastic Processes and their Applications | en |
dc.subject | ESTIMATION OF RISK | en |
dc.subject | FORWARD AND REVERSE MARKOV CHAINS | en |
dc.subject | MONTE CARLO SIMULATION | en |
dc.subject | TRANSITION DENSITY ESTIMATION | en |
dc.subject | COMPUTER SIMULATION | en |
dc.subject | DISCRETE TIME CONTROL SYSTEMS | en |
dc.subject | FINITE AUTOMATA | en |
dc.subject | MONTE CARLO METHODS | en |
dc.subject | PARAMETER ESTIMATION | en |
dc.subject | PROBABILISTIC LOGICS | en |
dc.subject | REVERSE ENGINEERING | en |
dc.subject | RISK ASSESSMENT | en |
dc.subject | ESTIMATION OF RISK | en |
dc.subject | FORWARD AND REVERSE MARKOV CHAINS | en |
dc.subject | JUMP DIFFUSION MODELS | en |
dc.subject | TRANSITION DENSITY ESTIMATION | en |
dc.subject | MARKOV PROCESSES | en |
dc.title | Forward and Reverse Representations for Markov Chains | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.scopus | 34347339641 | - |
local.contributor.employee | Milstein, G.N., Ural State University, Ekaterinburg, Russian Federation; Schoenmakers, J.G.M., Weierstrass Institut für Angewandte Analysis und Stochastik, Berlin, Germany; Spokoiny, V., Weierstrass Institut für Angewandte Analysis und Stochastik, Berlin, Germany | en |
local.description.firstpage | 1052 | - |
local.description.lastpage | 1075 | - |
local.issue | 8 | - |
local.volume | 117 | - |
dc.identifier.wos | 000248769900006 | - |
local.contributor.department | Weierstrass Institut für Angewandte Analysis und Stochastik, Berlin, Germany; Ural State University, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 41290069 | - |
local.identifier.eid | 2-s2.0-34347339641 | - |
local.identifier.wos | WOS:000248769900006 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-34347339641.pdf | 407,52 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.