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Abstract

In this paper we carry over the concept of reverse probabilistic representations developed in Milstein,
Schoenmakers, Spokoiny [G.N. Milstein, J.G.M. Schoenmakers, V. Spokoiny, Transition density estimation
for stochastic differential equations via forward–reverse representations, Bernoulli 10 (2) (2004) 281–312]
for diffusion processes, to discrete time Markov chains. We outline the construction of reverse chains in
several situations and apply this to processes which are connected with jump–diffusion models and finite
state Markov chains. By combining forward and reverse representations we then construct transition density
estimators for chains which have root-N accuracy in any dimension and consider some applications.
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1. Introduction

The paper is concerned with the problem of obtaining the transition density for a Markov
chain described by its one-step transition probabilities. In general, we do not assume that the
underlying Markov chain is autonomous, although this case is discussed as a particular example.
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The problem of calculating the transition density naturally arises in different areas such as
risk analysis and environmental modelling. Typically there is no analytic closed form solution
for the target density. Instead, a Monte Carlo method obtained by combining probabilistic
representations with statistical (e.g. kernel) density estimation is presented. Classical density
estimators for random processes such as the Parzen–Rosenblatt estimator (see for instance
Silverman [19]) suffer typically from the “curse of dimensionality”, which means a poor quality
of estimation when the dimension of the state space is large. So, the computational demand for
achieving a desirable estimation accuracy is enormous and often unfeasible.

In a diffusion setting, Milstein, Schoenmakers, Spokoiny [15] have developed a new approach,
which is based on forward and reverse simulation of the underlying diffusion process. It is
shown that this forward–reverse density estimator (FRE) is basically root-N consistent in any
dimension, this in contrast to the Parzen–Rosenblatt estimator which has accuracy N−1/(4+d) for
dimension d . The forward–reverse estimator has turned out to be very useful for many practical
applications. For example, in van den Berg, Heemink, Lin, Schoenmakers [1], Spivakovskaya,
Heemink, Milstein, Schoenmakers [20], and Spivakovskaya, Heemink, Schoenmakers [21], the
FRE is applied successfully to the estimation of pollutant concentrations in small coastal water
regions, which are caused by a certain calamity at another place. In the latter applications the
pollutants are modelled by a diffusion process. In other areas however, for instance finance,
the relevant underlying quantities are often modelled by time series, hence discrete-time Markov
processes. While the analytical tools for diffusion theory are essentially connected with parabolic
partial differential equations, the analytical formalism for discrete-time Markov processes is
connected with integral equations. So for such processes one can not relay on diffusion theory
and thus a discrete time version of the theory of forward reverse estimation in terms of integral
equations is called for. This theory is provided in the present article.

For convenience of the reader we summarize the main results of Milstein, Schoenmakers,
Spokoiny [15] in Section 2. The rest of the paper is organized as follows. In Section 3
we introduce general forward representations for discrete time Markov chains. From the
forward chains a family of reverse chains are derived in the spirit of Milstein, Schoenmakers,
Spokoiny [15] in Section 4. Section 5 formalizes general variance reduction for both forward
and reverse chains. In Section 6 reverse chains are derived for a special class of autonomous
discrete-time Markov chains and some examples are given. In Section 7 we give an application
to jump–diffusion models and in Section 8 we deal with Markov processes driven by finite state
Markov chains. The forward–reverse density estimator for Markov chains is discussed finally in
Section 9.

2. Density estimation for diffusions based on forward reverse representations

Consider a stochastic differential equation (SDE) in the Itô sense

dX = a(s, X)ds + σ(s, X)dW (s), t0 ≤ t ≤ s ≤ T, X (t) = x, (1)

where X = (X1, . . . , Xd)>, a = (a1, . . . , ad)> are d-dimensional vectors, W =

(W 1, . . . ,W m)> is an m-dimensional standard Wiener process, and σ = {σ i j
} is a d × m-

matrix, m ≥ d . It is assumed that the d ×d-matrix b := σσ>, b = {bi j
}, is of full rank for every

(s, x), s ∈ [t0, T ], x ∈ Rd . The functions ai (s, x) and σ i j (s, x) are assumed to be bounded and
to have bounded derivatives of any order, which implies existence and uniqueness of the solution
X t,x (s), X t,x (t) = x, t0 ≤ t ≤ s ≤ T , of (1), smoothness of the transition density p(t, x, s, y)
of the Markov process X , and existence of all the moments of p(·, ·, ·, y).
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The solution of SDE (1) may be approximated by different numerical methods, see Kloeden and
Platen [10], Milstein and Tretyakov [16].

2.1. The Parzen–Rosenblatt forward estimator (FE)

Let X̄ t,x be a numerical approximation of the process X t,x and let X̄ t,x
n (T ), n = 1, . . . , N , be

a sample of independent realizations of X̄ t,x (T ). Then one may estimate the transition density
p(t, x, T, y) from this sample by using standard techniques of non-parametric statistics such
as the classical kernel (Parzen–Rosenblatt) estimator. The kernel (Parzen–Rosenblatt) forward
density estimator with a kernel K and a bandwidth δ is given by

p̂FE(t, x, T, y) =
1

Nδd

N∑
n=1

K

(
X̄ t,x

n (T )− y

δ

)
, (2)

see Devroye and Györfi [3], Silverman [19]. For example, in (2) one could take the Gaussian
kernel K (x) = (2π)−d/2 exp(−|x |

2/2). Here δ should decrease to zero as N increases while
Nδd

→ ∞. It is well known that the quality of density estimation strongly depends on the
bandwidth δ and the choice of a suitable bandwidth is a delicate issue (see e.g. Devroye and
Györfi [3]). Even an optimal choice of the bandwidth δ leads to quite poor estimation quality,
in particular for large dimension d . More specifically, if the underlying density is known to be
two times continuously differentiable then the optimal bandwidth δ is of order N−1/(4+d) leading
to the accuracy of order N−2/(4+d), see Scott [18] or Silverman [19]. For larger d, this would
require a huge sample size N for providing a reasonable accuracy of estimation. In the statistical
literature this problem is referred to as the “curse of dimensionality”.

2.2. The reverse estimator (RE)

In order to proceed with more sophisticated density estimators we introduce a reverse
diffusion system for (1). We first introduce a reversed time variable s̃ = T + t − s and define

ã(s̃, y) = a(T + t − s̃, y),

b̃(s̃, y) = b(T + t − s̃, y),

σ̃ (s̃, y) = σ(T + t − s̃, y).

Then we introduce a vector process Y t,y,1
∈ Rd and a scalar process Y t,y governed by the reverse

time stochastic system

dY = α(s, Y )ds + σ̃ (s, Y )dW̃ (s), Y (t) = y,

dY = c(s, Y )Yds, Y(t) = 1, t0 ≤ t ≤ s ≤ T,
(3)

with W̃ being an m-dimensional standard Wiener process and

αi
=

d∑
j=1

∂ b̃i j

∂y j − ãi ,

c =
1
2

d∑
i, j=1

∂2b̃i j

∂yi∂y j −

d∑
i=1

∂ ãi

∂yi .

It is possible to construct an alternative density estimator in terms of the reverse system (3).
Suppose that (Ȳ t,y

m , Ȳ t,y,1
m ), m = 1, . . . ,M , is an i.i.d. sample of numerical solutions of (3).
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Then a pure reverse estimator is given by

p̂RE(t, x, T, y) :=
1

Mδd

M∑
m=1

K

(
x − Ȳ t,y

m (T )

δ

)
Ȳ t,y,1

m (T ). (4)

In fact, the reverse estimator (4) can be obtained as a side case from the forward–reverse estimator
presented below.

2.3. The forward–reverse estimator (FRE)

By combining the forward (2) and reverse (4) estimators via the Chapman–Kolmogorov
equation with respect to an intermediate time t∗, one can construct the forward–reverse estimator
(see [15]),

p̂FRE(t, x, T, y) =
1

M Nδd

M∑
m=1

N∑
n=1

K

(
X̄ t,x

n (t∗)− Ȳ t∗,y
m (T )

δ

)
Ȳ t∗,y,1

m (T ). (5)

It is shown that the forward–reverse estimator (5) has superior properties in comparison with
density estimators based on pure forward (2) or pure reverse (4) representations. Obviously, by
taking t∗ = T and t∗ = 0, the estimator (5) collapses to the pure forward estimator (2) and pure
reverse estimator (4), respectively.

For estimating a target value p by an estimator p̂ we define the accuracy of the estimator by

Accuracy( p̂) := ε( p̂) :=

√
E( p̂ − p)2 =

√
Var( p̂)+ Bias2( p̂). (6)

Loosely speaking, for a first order kernel applied in (5), any choice of 0 < t∗ < T , and a
bandwidth choice δN = O(N−1/(4+d)), the FRE has root-N (O(N−1/2)) accuracy for dimension
d ≤ 4. For d > 4 root-N accuracy is lost but then the FRE accuracy order is still the square of
the FE/RE accuracy order (see Table 1). Moreover, it can be shown that root-N accuracy of (5)
can also be achieved for d > 4 by using higher order kernels in (5).

By definition (6) it is possible to relate the “expected” accuracy of the different density
estimators to the number of simulated trajectories involved. However, simulating trajectories
is not the only costly issue in the density estimation. For all estimators one has to evaluate a
functional of the simulated trajectories. In case of the FE and RE estimators, this functional
consists of a single summation, whereas for the FRE estimator a more complicated double
summation needs to be evaluated. Therefore, for a proper comparison it is better to consider
the complexity of the different estimators which is defined as the required computation cost for
reaching a given accuracy ε. For instance, naive evaluation of the double sum in (5) would require
a computational cost of orderO(M N ) in contrast toO(N ) for the FE and RE estimators. Clearly,
such a naive approach would have a serious impact on the complexity of the FRE. Fortunately,
smarter procedures for evaluating this double sum exist, which utilize the small support of the
kernel K . As a consequence, the main computational cost is due to the simulation of forward
and reverse trajectories which is merely order of M + N . For details we refer to Milstein,
Schoenmakers, Spokoiny [15] and also van den Berg, Heemink, Lin, Schoenmakers [1].

We emphasize that the efficiency of the forward–reverse estimator in comparison with usual
ones is essentially based on a specific integral representation for the transition density due to the
Chapman–Kolmogorov equation. In this context, the principle of finding efficient estimators has
already been used in other respects. Frees [4] constructs root-N consistent estimators for densities
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Table 1
Summary of accuracy and complexity of the forward (FE), reverse (RE), and forward–reverse (FRE) estimators

Estimator FE/RE FRE d ≤ 4 FRE d > 4

δN N−1/(4+d) N−1/d log1/d N N−2/(4+d)

Accuracy O(N−2/(4+d)) O(N−1/2) O(N−4/(4+d))

Complexity O(ε−2−d/2) O(| log ε|ε−2) O(| log ε|ε−1−d/4)
Compl.{FE/RE}

Compl.{FRE}
| log ε|−1ε−d/2

| log ε|−1ε−1−d/4

of certain (known) functions of tuple observations. General results of such type have been
obtained by Giné and Mason [5,6]. Delaigle, Hall and Müller [2] provide another example where
root-N consistent estimation is possible in the context of nonparametric regression models,
whereas Saavedra and Cao [17], among others, presented similar results for estimating the
stationary density of moving average processes.

3. Forward probabilistic representations for Markov chains

Consider a discrete-time Markov process (Xn,Fn), n = 0, 1, 2, . . . , on a probability space
(Ω ,F,P) with phase space (S,S), henceforth called a Markov chain. In general we assume that
S is locally compact and that S is the Borel σ -algebra on S. For example, S = Rd or a discrete
subset of Rd . Let Pn, n ≥ 0, denote the one-step transition probabilities defined by

Pn(x, B) := P(Xn+1 ∈ B | Xn = x), n = 0, 1, 2, . . . , x ∈ S, B ∈ S. (7)

In the case of an autonomous Markov chain all the one-step transition probabilities coincide and
are equal to P := P0 = P1 = · · ·.

Let Xn,x
m , m ≥ n, be a trajectory of the Markov chain which is at step n in the point x ,

i.e., Xn,x
n = x . The multistep transition probabilities Pn,m are then defined by

Pn,m(x, B) := P(Xn,x
m ∈ B), x ∈ S, B ∈ S, m ≥ n.

Due to these definitions, Pn,n(x, B) = δx (B) = 1B(x) (Dirac measure), Pn = Pn,n+1, and the
Chapman–Kolmogorov equation has the following form:

Pn,m(x, B) =

∫
Pn,k(x, dy)Pk,m(y, B), x ∈ S, B ∈ S, n ≤ k ≤ m. (8)

Let us fix N > 0 and consider for 0 ≤ n ≤ N the function

un(x) :=

∫
Pn,N (x, dy) f (y) = E f (Xn,x

N ), (9)

where f is S-measurable and such that the mathematical expectation in (9) exists; for example,
f is bounded. By the Markov property we have for 0 ≤ n < N :

un(x) = E f (Xn,x
N ) = E f (X

n+1,Xn,x
n+1

N )

= E EFn+1 f (X
n+1,Xn,x

n+1
N ) = E E Xn,x

n+1 f (X
n+1,Xn,x

n+1
N )

= Eun+1(X
n,x
n+1) =

∫
un+1(y)Pn(x, dy).
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Thus, un(x) satisfies the following discrete integral Cauchy problem

un(x) =

∫
un+1(y)Pn(x, dy), n < N , (10)

uN (x) = f (x), (11)

and (9) is a forward probabilistic representation of its solution. In fact, the probabilistic
representation (9) can be used for simulating the solution of (10) and (11) by Monte Carlo.

We now are going to write the discrete Cauchy problem (10) and (11) in another form, thus
entailing an alternative probabilistic representation for its solution (9).

Let us consider for n = 0, 1, . . . , functions ρn : S × S → R+ such that the measures

Qn(x, dy) :=
Pn(x, dy)

ρn(x, y)
, x, y ∈ S (12)

are one-step transition functions as well, and functions hn : S × S → R such that∫
hn(x, y)Pn(x, dy) = 0, x ∈ S. (13)

Note that for arbitrary functions ρ̃n : S × S → R+, the functions ρn(x, y) :=

ρ̃n(x, y)
∫

Pn(x, dy′)/ρ̃n(x, y′) satisfy (12), and that for arbitrary functions h̃n : S × S → R, the
functions hn(x, y) := h̃(x, y) −

∫
h̃n(x, y′)Pn(x, dy′) satisfy (13). By (12) and (13), (10) and

(11) can be written as

un(x) =

∫
(un+1(y)+ hn(x, y))ρn(x, y)Qn(x, dy), n < N , (14)

uN (x) = f (x). (15)

The next theorem provides a forward probabilistic representation for the solution of a class of
discrete integral Cauchy problems which covers (14) and (15).

Theorem 1. Let Pn be the one-step transition density of a Markov chain X as in (7) and let
the function f : S → R be measurable and bounded. Let further ϕn : S × S → R and
gn : S × S → R be measurable and bounded functions for n = 0, 1, 2, . . . . Then, the solution
of the problem

wn(x) =

∫
(wn+1(z)+ gn(x, z))ϕn(x, z)Pn(x, dz), n < N , (16)

wN (x) = f (x) (17)

has the following probabilistic representation:

wn(x) = E
[

f (Xn,x
N )X n,x,1

N + Xn,x,1,0
N

]
, (18)

where (X,X ,X) is an extended Markov chain in which X and X are governed by the equations

X n,x,γ
k+1 = X n,x,γ

k ϕk(X
n,x
k , Xn,x

k+1), X n,x,γ
n = γ, (19)

Xn,x,γ,κ
k+1 = Xn,x,γ,κ

k + ϕk(X
n,x
k , Xn,x

k+1)gk(X
n,x
k , Xn,x

k+1)X
n,x,γ
k , Xn,x,γ,κ

n = κ,

where n ≤ k < N.
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Proof. Note that X n,x,γ
k = γX n,x,1

k and Xn,x,γ,κ
k = γXn,x,1,0

k + κ . Thus, for n < N , (18) may
be written as

wn(x) = E

[
f (X

n+1,Xn,x
n+1

N )X
n+1,Xn,x

n+1,X
n,x,1
n+1

N + X
n+1,Xn,x

n+1,X
n,x,1
n+1 ,Xn,x,1,0

n+1
N

]
= EX n,x,1

n+1 E (X
n,x
n+1,X

n,x,1
n+1 ,Xn,x,1,0

n+1 )

[
f (X

n+1,Xn,x
n+1

N )X
n+1,Xn,x

n+1,1
N + X

n+1,Xn,x
n+1,1,0

N

]
+ EXn,x,1,0

n+1

= E
[
X n,x,1

n+1 wn+1(X
n,x
n+1)+ Xn,x,1,0

n+1

]
= E

[
ϕn(x, Xn,x

n+1)wn+1(X
n,x
n+1)+ ϕn(x, Xn,x

n+1)gn(x, Xn,x
n+1)

]
=

∫
(wn+1(z)+ gn(x, z))ϕn(x, z)Pn(x, dz),

and (17) is trivially fulfilled for n = N . �

4. Reverse probabilistic representations

For definiteness we take S = Rd in this section, hence S = B(Rd), and assume that
the transition probabilities Pn,m(x, dy) have densities pn,m(x, y) with respect to the Lebesgue
measure on (S,S). Then the representation (9) can be written in the form

I ( f ) := E f (Xn,x
N ) =

∫
pn,N (x, y) f (y)dy. (20)

Let the initial value ξ of the chain X at moment n be random with density g(x). Consider the
functional

I (g, f ) =

∫ ∫
g(x)pn,N (x, y) f (y)dxdy = E f (Xn,ξ

N ). (21)

Formally, by taking for g a δ-function we obtain (20) again, and by taking f to be a δ-function
we obtain the integral

J (g) :=

∫
g(x)pn,N (x, y)dx . (22)

We now propose suitable (reverse) probabilistic representations for J (g). From the
Chapman–Kolmogorov equation (8) we obtain straightforwardly the Chapman–Kolmogorov
equation for densities,

pn,m(x, y) =

∫
pn,k(x, z)pk,m(z, y)dz, x, y ∈ S, n ≤ k ≤ m, (23)

where a “density” pn,n is to be interpreted as a Dirac distribution (δ-function). Let us fix n and
N , n < N , and introduce the functions

vk(y) :=

∫
g(x)pn,k(x, y)dx, n ≤ k ≤ N , (24)

where g is an arbitrary integrable function on S, not necessarily a density. From (23) we get
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vk(y) =

∫
vk−1(z)pk−1(z, y)dz, n < k ≤ N , (25)

vn(y) = g(y),

where pk−1 := pk−1,k denote the one-step densities. We are going to construct a class of reverse
Markov chains which give a probabilistic representation for the solution of (25); hence J (g). For
this we introduce for n < k ≤ N a reversed time variable m = N +n −k and consider functions
ψm : S × S → R+ such that for each m and y the function

qm(y, ·) :=
pN+n−m−1(·, y)

ψm(y, ·)
(26)

is a density on S. For example, one could take ψm independent of the second argument, and then
obviously

ψm(y) =

∫
pN+n−m−1(z, y)dz. (27)

We next introduce ṽm(y) := vN+n−m(y), and transform the problem (25) into

ṽm(y) =

∫
ṽm+1(z)ψm(y, z)qm(y, z)dz, n ≤ m < N , (28)

ṽN (y) = g(y).

Via Theorem 1 we thus obtain a probabilistic representation of the form (18) for the solution of
problem (28), hence (25) and J (g). Indeed, by taking in Theorem 1 instead of X a Markov chain
Y , where Y is governed by the one-step transition probabilities Qm(y, dz) := qm(y, z)dz (hence
Q instead of P), constructing Y according to

Ym,y,1
k+1 = Ym,y,1

k ψk(Y
m,y
k , Y m,y

k+1), Ym,y,1
m = 1, m ≤ k < N , (29)

and taking gn ≡ 0, it follows by Theorem 1 that

ṽm(y) = vN+n−m(y) = E
[
g(Y m,y

N )Ym,y,1
N

]
, n ≤ m ≤ N , (30)

and in particular

J (g) = vN (y) =

∫
g(x)pn,N (x, y)dx = E

[
g(Y n,y

N )Yn,y,1
N

]
. (31)

The representation (31), with Y given by (29), is a reverse probabilistic representation due to the
time reversed chain Y . Obviously, in general different choices for the functions ψm give rise to
different reverse representations for J (g).

5. Variance reduction

In this section we discuss how to obtain variance reduction in the probabilistic representations
(9) and (31). To this aim we consider the variance of the random variable

ς := f (Xn,x
N )X n,x,1

N + Xn,x,1,0
N (32)

in Theorem 1 and prove the next theorem.
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Theorem 2. Let wn, Pn,, f, ϕn, gn as in Theorem 1. Then it holds

wk(X
n,x
k )X n,x,1

k + Xn,x,1,0
k = E (X

n,x
k ,X n,x,1

k ,Xn,x,1,0
k )

[
wk+1(X

n,x
k+1)X

n,x,1
k+1 + Xn,x,1,0

k+1

]
, (33)

and

Var(X
n,x
k ,X n,x,1

k ,Xn,x,1,0
k )

[
wk+1(X

n,x
k+1)X

n,x,1
k+1 + Xn,x,1,0

k+1

]
= E (X

n,x
k ,X n,x,1

k ,Xn,x,1,0
k ) (X n,x,1

k )2(ϕk(X
n,x
k , Xn,x

k+1)wk+1(X
n,x
k+1)

+ϕk(X
n,x
k , Xn,x

k+1)gk(X
n,x
k , Xn,x

k+1)− wk(X
n,x
k ))2. (34)

As a consequence, if ϕn, gn , and wk in (16) and (17) are such that

ϕk(x, y)(wk+1(y)+ gk(x, y)) = wk(x), x, y ∈ S, n ≤ k < N , (35)

then

wk(X
n,x
k )X n,x,1

k + Xn,x,1,0
k = f (Xn,x

N )X n,x,1
N + Xn,x,1,0

N , n ≤ k ≤ N , a.s.

hence, the random variable (32) is deterministic.

Proof. For k < N we may write using the abbreviation Ek
:= E (X

n,x
k ,X n,x,1

k ,Xn,x,1,0
k ):

wk(X
n,x
k )X n,x,1

k + Xn,x,1,0
k

= X n,x,1
k Ek

[
f (X

k,Xn,x
k

N )X k,Xn,x
k ,1

N + Xk,Xn,x
k ,1,0

N

]
+ Xn,x,1,0

k

= Ek
[

f (X
k,Xn,x

k
N )X k,Xn,x

k ,X n,x,1
k

N + Xk,Xn,x
k ,X n,x,1

k ,Xn,x,1,0
k

N

]
= Ek

[
f (X

k+1,Xn,x
k+1

N )X
k+1,Xn,x

k+1,X
n,x,1
k+1

N + X
k+1,Xn,x

k+1,X
n,x,1
k+1 ,Xn,x,1,0

k+1
N

]
= Ek

[
X n,x,1

k+1 Ek+1
[

f (X
k+1,Xn,x

k+1
N )X

k+1,Xn,x
k+1,1

N + X
k+1,Xn,x

k+1,1,0
N

]
+ Xn,x,1,0

k+1

]
= Ek

[
wk+1(X

n,x
k+1)X

n,x,1
k+1 + Xn,x,1,0

k+1

]
,

thus proving (33). Next, by (33) we have

Var(X
n,x
k ,X n,x,1

k ,Xn,x,1,0
k )

[
wk+1(X

n,x
k+1)X

n,x,1
k+1 + Xn,x,1,0

k+1

]
= Ek

[
wk+1(X

n,x
k+1)X

n,x,1
k+1 + Xn,x,1,0

k+1 − wk(X
n,x
k )X n,x,1

k − Xn,x,1,0
k

]2

= Ek
(
X n,x,1

k

)2
(ϕk(X

n,x
k , Xn,x

k+1)wk+1(X
n,x
k+1)

+ϕk(X
n,x
k , Xn,x

k+1)gk(X
n,x
k , Xn,x

k+1)− wk(X
n,x
k ))2,

hence (34). �

Let us now go back to the with (9) equivalent Cauchy problem (14) and (15). The solution of
this problem has a probabilistic representation according to Theorem 1. Spelling it out, we have

un(x) = E
[

f (Xn,x
N )X n,x,1

N + Xn,x,1,0
N

]
, (36)
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where X and X are governed by the equations

X n,x,1
k+1 = X n,x,1

k ρk(X
n,x
k , Xn,x

k+1), X n,x,1
n = 1,

Xn,x,1,0
k+1 = Xn,x,1,0

k + ρk(X
n,x
k , Xn,x

k+1)hk(X
n,x
k , Xn,x

k+1)X
n,x,1
k , Xn,x,1,0

n = 0,

n ≤ k < N . By Theorem 2 the variance of this probabilistic representation vanishes if

ρk(x, y)(uk+1(y)+ hk(x, y)) = uk(x), n ≤ k < N . (37)

In principle, (37) may be satisfied while (12) and (13) hold. Indeed, if the functions ρk satisfy
(12), then the hk obtained by solving (37) satisfy (13). Vice versa, if the functions hk satisfy (13)
then the ρk obtained by solving (37) satisfy (12). In general the exact solution uk is not known
of course, so it will be not possible to choose ρk and hk such that ς in (32) is truly deterministic.
However, if we have a good approximation ûk of uk, n ≤ k ≤ N , at hand, there are possibilities
for variance reduction. To formalize the idea of an approximation, we assume that ûk is a known
solution of the problem

ûk(x) =

∫
ûk+1(y)Pk(x, dy)+ ĝk(x), n ≤ k < N , (38)

ûN (x) = f̂ (x),

where f̂ − f and the ĝk are close to zero in some sense.
Importance sampling. Let us assume that both f and its approximation f̂ are positive, and

that the approximate solution ûk is for all k positive as well. By then taking hk ≡ 0 for all k, and

ρk(x, y) =
ûk(x)− ĝk(x)

ûk+1(y)
, (39)

(12) holds and we may expect that the variance of (32) will be close to zero. If f does not satisfy
f > 0 but is bounded from below we may shift the problem by choosing a constant C such that
f + C > 0, and then consider (9) with f replaced by f + C .

Control variates. By taking ρk ≡ 1 for all k, and

hk(x, y) = ûk(x)− ĝk(x)− ûk+1(y),

(13) holds and again we may expect that the variance of (32) will be close to zero.
Combined variance reduction. Importance sampling and control variates can be combined in

the following way. Assume that functions ρk > 0 may be identified such that (12) holds. Then
by taking

hk(x, y) =
ûk(x)− ĝk(x)

ρk(x, y)
− ûk+1(y),

(13) holds and we may expect that the Monte Carlo estimator for un(x) corresponding to (36)
has low variance.

For the reverse probabilistic representation (29)–(31) of the solution of (28) analogue variance
reduction methods apply. To be more specific, let ρ̃m and h̃m be such that

Q̃m(y, dz) := Qm(y, dz)/ρ̃m(y, z) = qm(y, z)dz/ρ̃m(y, z) (40)
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are one step transition probabilities (see (26)), and∫
h̃m(y, z)ψm(y, z)Qm(y, dz) = 0 (41)

for all y ∈ S. Then with ψ̃m := ψm ρ̃m (28) may be equivalently written as the integral Cauchy
problem

ṽm(y) =

∫
(̃vm+1(z)+ h̃m(y, z))ψ̃m(y, z)Q̃m(y, dz), n ≤ m < N ,

ṽN (y) = g(y)

for which Theorem 1 gives a probabilistic representation of its solution. According to Theorem 2
the variance of the corresponding random variable (32) in this probabilistic representation
vanishes when

ψ̃m(y, z)(̃vm+1(z)+ h̃m(y, z)) = ṽm(y), y, z ∈ S, n ≤ m < N .

Based on an approximate solution of Cauchy problem (28) of the form,

v̂m(y) =

∫
v̂m+1(z)ψm(y, z)Qm(y, dz)+ âm(y), n ≤ m < N , (42)

v̂N (y) = ĝ(y),

we may apply importance sampling, control variates, or a combination of both as for the forward
representation above. For example, if ρ̃m is such that (40) holds, then

h̃m(y, z) =
v̂m(y)− âm(y)

ψ̃m(y, z)
− v̂m+1(z)

satisfies (41) and may lead to a variance reduced representation.
Concluding we may say that Theorem 2 provides variance reduction methods as combinations

of importance sampling and control variates and thus can be regarded as a discrete time version
of Theorem 4.2 in Milstein and Schoenmakers [14] and Theorem 2.1 in Milstein, Schoenmakers,
Spokoiny [15].

6. Reversing autonomous Markov chains

In this section we study Markov chains in the state space S = Rd with autonomous one step
transition density p(x, y) (p does not depend on the step number due to autonomy). If the density
p(x, y) and the integral function

ψ(y) :=

∫
p(x, y)dx, y ∈ Rd ,

are known, we can define a Markov chain Y with one step transition density

q(y, z) =
p(z, y)

ψ(y)
(43)

and then give for the solution of (24) the following reverse probabilistic representation (see
(29)–(31)):

vk(y) = E
[
g(Y N+n−k,y

N )YN+n−k,y,1
N

]
, (44)
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Y N+n−k,y
N+n−k = y, n ≤ k ≤ N ,

YN+n−k,y,1
r+1 = YN+n−k,y,1

r ψ(Y N+n−k,y
r+1 ), N + n − k ≤ r < N ,

YN+n−k,y,1
N+n−k = 1.

A large class of autonomous Markov chains can be written in the form

Xn+1 = A(Xn, ξn+1), n = 0, 1, 2, . . . , (45)

where ξn, n = 1, 2, . . . , are i.i.d. random variables with density φ in Rd . Let us assume that the
map A : Rd

× Rd
→ Rd is continuously differentiable and such that there exists a continuously

differentiable inverse α with

A(x, α(x, z)) = z. (46)

For any bounded measurable f the one-step transition density p(x, y) satisfies∫
f (y)p(x, y)dy = E f (Xn,x

n+1) = E f (A(x, ξn+1))

=

∫
f (A(x, ξ))φ(ξ)dξ =

∫
f (y)φ(α(x, y))

∣∣∣∣∂α(x, y)

∂y

∣∣∣∣ dy. (47)

Hence, from (47) it follows that

p(x, y) = φ(α(x, y))

∣∣∣∣det
∂α(x, y)

∂y

∣∣∣∣ . (48)

According to Section 2, a reverse chain is identified by choosing a function ψ : Rd
×Rd

→ R+,
such that

q(y, z) :=
p(z, y)

ψ(y, z)
(49)

is a density in z for fixed y. Of course there are infinitely many possible possibilities. The choice
(43), for instance, gives the one-step density

q(y, z) =

φ(α(z, y))
∣∣∣det ∂α(z,y)

∂y

∣∣∣∫
φ(α(x, y))

∣∣∣det ∂α(x,y)
∂y

∣∣∣ dx
.

When there exists in addition a continuously differentiable inverse β such that

A(β(z, y), y) = z, (50)

we may consider the “physically reversed” chain

Yn+1 = β(Yn, ξ̃n+1), n = 0, 1, 2, . . . , (51)

where the sequence ξ̃n is an i.i.d copy of the sequence ξn , hence

A(Yn+1, ξ̃n+1) = A(β(Yn, ξ̃n+1), ξ̃n+1) = Yn .

The chain (51) has a one-step density of the form (49) for a particular choice of ψ . Indeed, let
q(y, z) be the one-step transition density for Yn . Then, by noting β(y, α(z, y)) = z and writing
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η(y, z) := α(z, y), we have similar to (48),

q(y, z) = φ(η(y, z))

∣∣∣∣det
∂η(y, z)

∂z

∣∣∣∣ = φ(α(z, y))

∣∣∣∣det
∂α(z, y)

∂z

∣∣∣∣
= p(z, y)

|det ∂α(z, y)/∂z|

|det ∂α(z, y)/∂y|
= p(z, y)

∣∣∣∣det
∂A

∂x
(z, α(z, y))

∣∣∣∣ . (52)

Thus, by taking for all k,

ψk(y, z) := ψ(y, z) :=

∣∣∣∣det
∂A

∂x
(z, α(z, y))

∣∣∣∣−1

in the construction of Section 2 and applying Theorem 1, we obtain as in (30) a probabilistic
representation for the solution of

um(y) = vN+n−m(y) =

∫
g(x)pn,N+n−m(x, y)dx, n ≤ m ≤ N ,

(hence the integral (24)) of the form

vk(y) = E
[
g(Y N+n−k,y

N )YN+n−k,y,1
N

]
, n ≤ k ≤ N , (53)

Y N+n−k,y
r+1 = β(Y N+n−k,y

r , ξ̃r+1), N + n − k ≤ r < N ,

YN+n−k,y,1
r+1 = YN+n−k,y,1

r

∣∣∣∣det
∂A

∂x
(Y N+n−k,y

r+1 , α(Y N+n−k,y
r+1 , Y N+n−k,y

r ))

∣∣∣∣−1

.

Example 3. Let A in (45) be of the form,

A(x, ξ) = B(x)+ C(x)ξ, B : Rd
→ Rd , C : Rd

→ Rd×d , ξ ∈ Rd . (54)

In fact, such a form A arises when discretizing a diffusion SDE and then exchanging Wiener
increments with some i.i.d. system of random variables (ξn)n=1,2,..., which reflect certain features
(for example heavy tails) of a problem under consideration. As a special case we consider the
Markov chain

Xn+1 = A(Xn, ξn+1) = B Xn + Cξn+1, B,C ∈ Rd×d , (55)

which may be regarded as a discrete Ornstein–Uhlenbeck process under an i.i.d. noise sequence
ξn, n = 1, 2, . . . , of not necessarily Gaussian random variables. Let us suppose that B and C are
invertible. Then, α and β in (46) and (50) exist with

α(x, z) = C−1(z − Bx), β(z, y) = B−1(z − Cy),

and as a reverse chain we may take

Y m,y
k+1 = B−1(Y m,y

k − C ξ̃k+1), Y m,y
m = y,

Ym,y,1
k+1 =

Ym,y,1
k

|det B|
, m ≤ k < N ,

Ym,y,1
m = 1, n ≤ m ≤ N .

In the case where the ξn are Gaussian the chains X and Y are Gaussian as well and all
characteristics of X and Y can be computed analytically. However, this analytical tractability
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is generally lost when X is governed by (55) with non-Gaussian ξn , for example i.i.d. copies of
some heavy tailed distribution.

Example 4. Consider a discrete Black–Scholes model

X i
n+1 = Ai (Xn, ξ) := X i

n exp
[
µi + (σi )

> ξn+1

]
,

µi ∈ R, σi ∈ Rd , X i
0 > 0, i = 1, . . . , d,

where the σi and ξn are to be interpreted as column vectors in Rd , and the d × d matrix
σ := [σ1, . . . , σd ]> is assumed to be invertible with inverse σ−1. Then, α and β in (46) and
(50) exist, where

αi (x, z) =

d∑
k=1

(σ−1)ik (−µk − ln xk + ln zk) ,

βi (z, y) = zi exp
[
−µi − (σi )

> y
]
.

Note that ∂Ai (x, y)/∂xk = δik exp
[
µi + (σi )

> y
]
, and so after a little algebra we obtain a

reverse chain given by

Y
i m,y
k+1 = βi (Yk, ξ̃k+1) = Y

i m,y
k exp

[
−µi − (σi )

> ξ̃k+1

]
,

Y
i m,y
m = yi , i = 1, . . . , d,

Ym,y,1
k+1 = Ym,y,1

k exp

[
−µ>1−

∑
i, j

σi jα j (Y
m,y
k+1 , Y m,y

k )

]
= Ym,y,1

k

d∏
i=1

Y
i m,y
k+1

Y
i m,y
k

= Ym,y,1
k exp

[
−µ>1 − 1T σ ξ̃k+1

]
, m ≤ k < N ,

Ym,y,1
m = 1, n ≤ m ≤ N ,

according to (53). For Gaussian noise, both X and Y are log-Gaussian Markov chains, hence
analytically tractable like in the previous example. But also here the analytical tractability is lost
when non-Gaussian noise is considered.

Example 5. Let us consider the following stochastic volatility model:

Xn+1 = Xn + f (Vn)ξn+1,

Vn+1 = c + g(Xn)+ ηn+1,

where c > 0, f, g : R → R are smooth and invertible functions with continuous non-zero
derivatives, and (ξn, ηn)n=1,2,... are i.i.d. random variables. Hence,

A(x, v, ξ, η) = [x + f (v)ξ, c + g(x)+ η]>

and according to (46) and (50), we solve α1, α2 from

x + f (v)α1 = r

c + g(x)+ α2 = s,

yielding

α1(x, v, r, s) =
r − x

f (v)
, f (v) 6= 0,
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α2(x, v, r, s) = s − g(x)− c,

and β1, β2 from

β1 + f (β2)ξ = y,

c + g(β1)+ η = w,

yielding

β1(y, w, ξ, η) = ginv(w − η − c)

β2(y, w, ξ, η) = f inv(ξ−1 y − ξ−1ginv(w − η − c)), ξ 6= 0.

Thus, as a reverse chain we may take

Y m,y,w
k+1 = ginv(W m,y,w

k − ηk+1 − c), Y m,y,w
m = y

W m,y,w
k+1 = f inv(ξ−1

k+1Y m,y,w
k − ξ−1

k+1Y m,y,w
k+1 ), W m,y,w

m = w

Ym,y,w,1
k+1 =

Ym,y,w,1
k∣∣g′(Y m,y,w

k+1 ) f ′(W m,y,w
k+1 )

∣∣ , Ym,y,w,1
m = 1 n ≤ m ≤ N .

Note that the inverse (r, s) → α(x, v, r, s) exists only for f (v) 6= 0. This corresponds to the fact
that the one step transition density of X does not exist when f (Vn) = 0. On the other hand the
inverse (y, w) → β(y, w, ξ, η) exists only for ξ 6= 0. This means that the construction of Yk+1
breaks down for a draw ξk+1 = 0. However, since the random variables (ξn, ηn) are assumed to
have a density, and f ′

6= 0, both ξk+1 = 0 and f (Vn) = 0 are events of probability zero.

7. Reversing the jump chain of a jump–diffusion

We consider a pure jump process1 Jt , t ≥ 0, in R, with jump times 0 < τ1 < τ2 < · · ·, where
τk+1 − τk are i.i.d. according to an exponential distribution with parameter λ, τ0 := 0, J0 := 0,
and where the jumps are i.i.d. according to a density ν on R. Hence

Jt =

∑
k: τk+1≤t

1Jτk

with 1Jτk := Jτk+1
− Jτk being i.i.d distributed with density ν. The process Jt is piece-wise

constant and is continuous from the right with limits from the left (c.r.l.l.). The solution of the
SDE

dX t = µ(X t−, Jt−)dt + σ(X t−, Jt−)dWt + η(X t−, Jt−)dJt , X0 = x0,

for smooth functions µ, η : R × R → R, σ : R × R → R, with a from J independent Wiener
process Wt , is generally called a jump diffusion. The process X t is c.r.l.l. as well and at jump
times we have

Xτk+1 = Xτk +

∫
τk+1

τk

µ(Xs, Jτk )ds + σ(Xs, Jτk )dWs + η(Xτk+1−, Jτk )1Jτk .

We now consider the autonomous Markov chain X in R3 defined by Xk = (τk, Xτk , Jτk ),
k = 0, 1, . . . , and its associated reverse representations. As a motivation, we imagine that we

1 From now on we rather denote time parameters by subscripts.
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consider a process of which only its jumps and jump times are of importance. For example, a
jump might be connected with some default event and an insurance company is concerned with
the occurrence of the10th default, since she then has to pay money due to a certain insurance
contract. If the actual default time of the 10th default is irrelevant for the insurance company, one
could only consider the autonomous Markov chain (Xτk , Jτk ), k = 0, 1, . . . . In many cases the
one-step transition density of the latter chain is less tractable, however.

Let πa,x (t, ·) be the transition density in R of the process U a,x
t defined as solution of the SDE

dUt := µ(Ut , a)ds + σ(Ut , a)dWt , t ≥ 0, U0 = x,

and let α(a, b, y) be the solution of the equation

α + η(α, a)(b − a) = y.

Then given τk = ς , Xς = x , Jς = a, hence Xk = (ς, x, a), the one-step density of
Xk+1 = (τk+1, Xτk+1 , Jτk+1) in (τ, y, b), ς < τ , is given by

p(ς, x, a, τ, y, b) = λe−λ(τ−ς)πa,x (τ − ς, α(a, b, y))ν(b − a), ς < τ. (56)

Clearly, the chain X is autonomous. By taking the integral

ψ(τ, y, b) =

∫ τ

0
λe−λ(τ−ς)dς

∫
dx

∫
πa,x (τ − ς, α(a, b, y))ν(b − a)da

=

∫ τ

0
λe−λςdς

∫
dx

∫
πa,x (ς, α(a, b, y))ν(b − a)da, (57)

we obtain from (43) the one-step transition density

q(τ, y, b, ϑ, z, c) :=
p(ϑ, z, c, τ, y, b)

ψ(τ, y, b)

=
λe−λ(τ−ϑ)πc,z(τ − ϑ, α(c, b, y))ν(b − c)

ψ(τ, y, b)
, ϑ < τ, (58)

and the corresponding reverse Markov chain (Y,Y) in R3
× R, where Yk := (Θk, Zk,Ck) is

governed by the one-step density (58), with

Θm,τ,y,b
m = τ, Zm,τ,y,b

m = y, Cm,τ,y,b
m = b, (59)

and Y satisfies

Ym,τ,y,b,1
k+1 = Ym,τ,y,b,1

k ψ(Θm,τ,y,b
k , Zm,τ,y,b

k ,Cm,τ,y,b
k ),

Ym,τ,y,b,1
m = 1, m ≤ k < N , (60)

(see (29)–(31) and (44)).
As a more particular case we consider the autonomous process

dX t = µ(X t )dt + σ(X t )dWt + dJt , (61)

where the diffusion component of X has transition density π x (t, ·), which is independent of
a. Then, Xk := (τk, Xτk ), k = 0, 1, . . . , is an autonomous Markov chain itself, with one step
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transition density

p(ς, x, τ, y) = λe−λ(τ−ς)

∫
π x (τ − ς, y − u)ν(u)du, ς < τ. (62)

Thus, according to (57) and (58), we obtain a reverse chain Y with one step transition density

q(τ, y, ϑ, z) =
p(ϑ, z, τ, y)

ψ(τ, y)
, ϑ < τ, (63)

where

ψ(τ, y) =

∫ τ

0
dςλe−λς

∫
dx
∫
π x (ς, y − u)ν(u)du. (64)

Example 6. Consider the jump–diffusion

dX t = κ(χ − X t )dt + σdWt + dJt ,

for which the diffusion component

dUt = κ(χ − Ut )dt + σdWt

is a mean reverting Gaussian process with transition density

π(t, x, u) =
1√

πσ 2(1 − e−2κt )/κ
exp

[
−
(χ + (x − χ)e−κt

− u)2

σ 2(1 − e−2κt )/κ

]
,

and so (62) becomes

p(ς, x, τ, y) =
λe−λ(τ−ς)√

πσ 2(1 − e−2κ(τ−ς))/κ

×

∫
exp

[
−
(χ + (x − χ)e−κ(τ−ς)

+ u − y)2

σ 2(1 − e−2κ(τ−ς))/κ

]
ν(u)du, ζ < τ.

It is easy to see that
∫
π x (t, u)dx = eκt , hence (64) becomes,

ψ(τ, y) =

∫ τ

0
dςλe−λς

∫
dx
∫
π(ς, x, y − u)ν(u)du

=

∫ τ

0
dςλe−λςeκς

∫
ν(u)du = λ

e(κ−λ)τ − 1
κ − λ

,

and the reverse transition density (63) is thus given by

q(τ, y, ϑ, z) =
(κ − λ) e−λ(τ−ϑ)(

e(κ−λ)τ − 1
)√
πσ 2(1 − e−2κ(τ−ϑ))/κ

×

∫
exp

[
−
(χ + (z − χ)e−κ(τ−ϑ)

+ u − y)2

σ 2(1 − e−2κ(τ−ϑ))/κ

]
ν(u)du, ϑ < τ. (65)

The dynamics (58)–(60) thus collapses to the chain Yk = (Θk, Zk) governed by (65) with

Θm,τ,y
m = τ, Zm,τ,y,b

m = y,

and scalar process Y satisfying
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Ym,τ,y,1
k+1 = Ym,τ,y,1

k ψ(Θm,τ,y
k , Zm,τ,y

k ),

Ym,τ,y,b,1
m = 1, m ≤ k < N .

Finally we note that for a variety of jump densities ν, (65) can be expressed in close form (for
instance when v is Gaussian).

8. Reversed representations for ODE processes driven by continuous time Markov chains

To complete the picture we describe in this section the reversion of processes obtained as the
solution of an ordinary differential equation which is driven by a continuous time Markov chain
with finite state space. Suppose we are given a regular Markov chain (X t )t≥0 on a probability
space (Ω ,F,P) with state space S = {x1, . . . , xm}. In connection with the chain X we consider
a system of ordinary differential equations

dY

ds
= a(X, Y ), (66)

where Y = [Y 1, . . . , Y d
]
>, and a : S × Rd

3 (x, y) → [a1(x, y), . . . , ad(x, y)]> ∈ Rd . We
assume the functions ai

j (y) := ai (x j , y), i = 1, . . . , d, j = 1, . . . ,m, have bounded continuous
derivatives. Let

Q =


−q1 q12 . . . q1m
q21 −q2 . . . q2m
· · · ·

qm1 qm2 . . . −qm

 ,
be the infinitesimal generator matrix of the chain X with qi j ≥ 0, i 6= j , and∑

j 6=i

qi j = qi . (67)

It is well known that the infinitesimal generator of the Markov process (X, Y ) generated by the
system (66) is given by

A f (xi , y) =

d∑
k=1

ak(xi , y)
∂ f

∂yk (xi , y)− qi f (xi , y)+

∑
j 6=i

qi j f (x j , y),

i = 1, . . . ,m, y ∈ Rd (68)

(see for example Milstein and Repin [13]). In particular, for some smooth function f (x, y) with
bounded derivative with respect to y, the functions ui (t, y) := E f (X xi (t), Y xi ,y(t)) satisfy the
hyperbolic system

∂ui

∂t
(t, y) =

d∑
k=1

ak(xi , y)
∂ui

∂yk (xi , y)− qi ui +

∑
j 6=i

qi j ui ,

ui (0, y) = f (xi , y) i = 1, . . . ,m, y ∈ Rd .

By considering the semigroup generated by the extended Markov process (X, Y,Y) on S ×Rd
×

R, where Y is defined by

dY xi ,y,ς

dt
= b(X, Y )Y xi ,y,ς , Y xi ,y,ς

0 = ς,



1070 G.N. Milstein et al. / Stochastic Processes and their Applications 117 (2007) 1052–1075

for some bounded real valued function b(x, y) in S × Rd with continuous derivatives in y, it
follows that the functions

vi (t, y) := E f (X xi
t , Y xi ,y

t ) exp
(∫ t

0
b(X xi

s , Y xi ,y
s )ds

)
,

i = 1, . . . ,m, y ∈ Rd , t > 0, (69)

satisfy the more general hyperbolic system

∂vi

∂t
=

d∑
k=1

ak(xi , y)
∂vi

∂yk + b(xi , y)vi − qivi +

∑
j 6=i

qi jv j (70)

ui (0, y) = f (xi , y), i = 1, . . . ,m, y ∈ Rd .

So, (69) is a probabilistic representation for the solution of (70) which may be used for evaluating
the vi (t, y) in (70) by Monte Carlo simulation.

Let an initial distribution of (X, Y ) be given by

P{X0 = xi , Y0 ∈ H} =

∫
H
λi (y)dy (71)

for i = 1, . . . ,m, with λi (y) being a density on Rd . Suppose further that the λi (y)ak(xi , y) have
continuous partial derivatives ∂(λi ak

i )/∂yk and that the integrals

Ii =

∫
Rd

d∑
k=1

∂(λi ak
i )

∂yk (y)dy, i = 1, . . . ,m,

exist. Then for each i = 1, . . . ,m, the function ψi (t, y) defined by the property∫
H
ψi (t, y)dy = P({X t = xi , Yt ∈ H}),

satisfies the forward Kolmogorov equation

∂ψi

∂t
= −

d∑
k=1

∂(ψi ak
i )

∂yk (y)− qiψi +

∑
j 6=i

q j iψ j (72)

with initial condition

ψi (0, y) = λi (y) = λ(xi , y), i = 1, . . . ,m. (73)

In fact ψi (t, ·)/P({X (t) = xi }) is the conditional density of Y at time t > 0, given X (t) = xi .
In order to obtain a probabilistic representation for ψi (t, y) we will cast the system (72) into the
form of (70):

∂ψi

∂t
= −

d∑
k=1

ak(xi , y)
∂ψi

∂yk + c(xi , y)ψi − q∗

i ψi +

∑
j 6=i

q∗

i jψ j , (74)



G.N. Milstein et al. / Stochastic Processes and their Applications 117 (2007) 1052–1075 1071

where

q∗

i j = q j i , i 6= j, (75)

q∗

i =

∑
j 6=i

q∗

i j =

∑
j 6=i

q j i ,

c(xi , y) = −

d∑
k=1

∂ak(xi , y)

∂yk + q∗

i − qi .

Thus, for the solution of (72) we obtain a probabilistic representation

ψi (t, y) = Eλ(X∗xi
t , Y ∗xi ,y

t ) exp
(∫ t

0
c(X∗xi

s , Y ∗xi ,y
s )ds

)
, (76)

via a reversed process (X∗, Y ∗), where X∗ is a Markov chain with generator matrix Q∗
:= {q∗

i j }

with q∗

i i = −q∗

i , and Y ∗ is governed by the equation

dY ∗

ds
= −a(X∗, Y ∗). (77)

Note that the representation (76) for the solution of the problem (72) and (73) holds for any λ
with bounded derivatives of first order, hence not only for densities.

Some bibliographical notes. The first probabilistic representation of solutions for hyperbolic
equations (for the telegraph equation) goes back to M. Kac. Sufficiently general systems
of ordinary differential equations driven by a Markov chain were considered in Kac and
Krasovsky [9]. The detailed description of the process (X, Y ) was done in Milstein and Repin
[13]. In a lot of papers such processes were treated in connection with random evolution (see, for
instance, Griego and Hersh [7], Hersh and Papanicolaou [8] and references therein). In all these
papers the process X does not depend on the state of Y . The interaction of general processes
X and Y is considered in Milstein [11]. Instead of the system of ordinary differential equation
(66) it is possible to examine a system of stochastic differential equations interacting with a
Markov chain as well. Both Cauchy problems and boundary value problems for systems of partial
differential equations arising in connection with interacting Markov processes are considered in
Milstein [12].

9. Forward–reverse transition density estimation with applications

In this section we describe for a Markov Chain (7) an efficient procedure for estimating the
transition density pn,m(x, y) by a forward–reverse probabilistic representation. The procedure
below is in fact a discrete-time version of the method developed in Milstein, Schoenmakers,
Spokoiny [15] for continuous-time processes given by an Ito SDE. Thus, let us take x, y and
n,m fixed and concentrate on the problem of estimating pn,m(x, y). If m = n + 1 this is a one
step transition density which is assumed to be given. Therefore we assume m − n � 1 and, in
the spirit of Milstein, Schoenmakers, Spokoiny [15], for some fixed k∗ with n < k∗ < m we
consider the Chapman–Kolmogorov equation

pn,m(x, y) =

∫
pn,k∗(x, z)pk∗,m(z, y)dz (78)

and observe by Section 4 that for hx (z) := pn,k∗(x, z) (78) has a probabilistic representation
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pn,m(x, y) =

∫
hx (z)pk∗,m(z, y)dz = E

[
hx (Y k∗,y

m )Yk∗,y,1
m

]
,

where (Y,Y) is constructed as in (30). We next consider ĥx to be a Parzen–Rozenblatt estimator
for the density function z → hx (z). Hence,

ĥx (z) = p̂n,k∗(x, z) =
1

Lδd

L∑
l=1

K

(
Xn,x

k∗(l) − z

δ

)
,

where K is some kernel, δ is a bandwidth parameter, and Xn,x
k∗(l) are independent realisations of

Xn,x
k∗ for l = 1, . . . , L . By replacing pn,k in (78) by its estimator ĥ we obtain

p̂n,m(x, y) :=

∫
ĥx (z)pk∗,m(z, y)dz = E

[
ĥx (Y k∗,y

m )Yk∗,y,1
m

]
,

and completely similar to a proof in Milstein, Schoenmakers, Spokoiny [15] it follows that the
estimator

̂̂pn,m(x, y) :=
1
R

R∑
r=1

ĥx (Y k∗,y
m(r))Y

k∗,y,1
m(r)

=
1

L Rδd

R∑
r=1

L∑
l=1

K

 Xn,x
k∗(l) − Y k∗,y

m(r)

δ

Yk∗,y,1
m(r) , (79)

with (Y k∗,y
m(r),Y

k∗,y,1
m(r) ) being independent realisations of (Y k∗,y

m ,Yk∗,y,1
m ) for r = 1, . . . , R, is a

root-L consistent estimator for the target density pn,m(x, y) when L = R. For a detailed study of
the properties of the forward–reverse density estimator (79) we refer to Milstein, Schoenmakers,
Spokoiny [15]. Below we consider some applications of the forward–reverse estimator (79).

Estimating the probability of visiting a bounded region

Let µG be a probability measure concentrated on G. Let y1, . . . , yR be i.i.d. drawings from
µG . Then the estimator

̂̂pn,m(x, µG) :=
1

L Rδd

L∑
l=1

R∑
r=1

K

 Xn,x
k∗(l) − Y k∗,yr

m(r)

δ

Yk∗,yr ,1
m(r) (80)

has expectation

Ê̂pn,m(x, µG) := E E

 1
L Rδd

L∑
l=1

R∑
r=1

K

 Xn,x
k∗(l) − Y k∗,yr

m(r)

δ

Yk∗,yr ,1
m(r)

∣∣∣∣∣∣ y1, . . . , yM


= E

1
R

R∑
r=1

E

 1
Lδd

L∑
l=1

K

 Xn,x
k∗(l) − Y k∗,yr

m(r)

δ

Yk∗,yr ,1
m(r)

∣∣∣∣∣∣ yr


=: E

R∑
r=1

1
R
(pn,m(x, yr )+ ε(δ, yr ))
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=

∫
µG(dy)pn,m(x, y)+

∫
µG(dy)ε(δ, y)

=:

∫
µG(dy)pn,m(x, y)+ ε(δ, µG),

since the bias of the FRE is independent of L and R. If the kernel K is of sufficient order (for
d ≤ 4 first order is enough) and the region G is bounded, it follows from Section 6 of Milstein,
Schoenmakers, Spokoiny [15] that ε(δ, µG) = O(δ2), and moreover if (R = L),

Var ̂̂pn,m(x, µG) ≤
C

L
+ o

(
1
L

)
, L → ∞,

where C is a constant.
Suppose G is some bounded (Borel) region in Rd with small probability to be visited by the

chain X in m − n steps when X starts from x at time n. Hence Pn,m(x,G) :=
∫

G pn,m(x, y)dy
is small. In such a situation one could estimate Pn,m(x,G) in principle with root-N accuracy
using a standard Monte Carlo estimator, ÎG say, for the probabilistic representation (20), where

f is taken to be the indicator of G. However, the relative accuracy
√

Var ÎG/Pn,m(x,G)

of this estimator is equal to
√
(P−1

n,m(x,G)− 1)/N . Hence the relative accuracy is root-N ,
but with a large order coefficient when Pn,m(x,G) is small. The FRE estimator (80) mends
these problems. Indeed, take µ to be the uniform distribution on G, then (80) yields an
estimator for Pn,m(x,G)/λ(G) (with λ denoting the Lebesgue measure on Rd ) with accuracy
of
√

C/N + ε2(δ, µG). Hence, λ(G)̂̂pn,m(x, µG) is an estimator for Pn,m(x,G) with relative

accuracy λ(G)P−1
n,m(x,G)

√
C/N + ε2(δ, µG). Since Pn,m(x,G)/λ(G) can be interpreted as the

average density over the region G, the root-N coefficient does not explode when, for instance,
the density pn,m(x, y) is continuous and positive for all y.

The problem of estimating the probability of visiting a critical region at a certain time has
many applications in the area of environmental modelling, e.g, see Spivakovskaya et al. [20], van
den Berg et al. [1].

Probability of visiting an unbounded domain

If the domain G is unbounded but such that it does not intersect with a certain sphere, we may
map G to the inside of this sphere and then work with the image of the chain X under this map.
Spelling it out, let G ⊂ {x ∈ Rd

: |x − x0| > r0} for some x0 ∈ Rd and r0 > 0, and let

S : x → x0 +
r2

0

|x − x0|
2 (x − x0), x ∈ Rd , x 6= x0,

be the spherical inversion with respect to the sphere of radius r0 with center x0. The map S is a
bijective transformation on Rd

\{x0} with inverse S−1
= S, which maps {x ∈ Rd

: |x −x0| > r0}

onto {x ∈ Rd
: 0 < |x − x0| < r0}. Let us define U n,u

m := S(Xn,S−1(u)
m ), u 6= x0. Then, clearly,

Pn,m(x,G) = P(Xn,x
m ∈ G) = P(S(Xn,x

m ) ∈ S(G))

=: P(U n,S(x)
m ∈ S(G)), x 6= x0,

with S(G) := {S(x) ∈ Rd
: |x | ∈ G} being bounded. We can thus apply our forward–reverse

methodology to the Markov chain U and the region S(G). For this we need to find the one-step
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transition density of the chain U , denoted by pU
n . It holds that∫

A
pU

n (u, v)dv := P(U n,u
n+1 ∈ A) = P(Xn,S−1(u)

n+1 ∈ S−1(A))

=

∫
S−1(A)

pn(S
−1(u), y)dy

=

∫
A

pn(S
−1(u), S−1(v))

∣∣∣∣det
∂S−1

∂v

∣∣∣∣ dv, u 6= x0,

by the standard transformation theorem. We thus yield,

pU
n (u, v) = pn(S

−1(u), S−1(v))

∣∣∣∣det
∂S−1

∂v

∣∣∣∣ = pn(S(u), S(v))

∣∣∣∣det
∂S

∂v

∣∣∣∣ , u 6= x0.

Estimating Value at Risk

Let L(z) be the loss (in absolute value) of a portfolio as function of the asset position vector
z = Xn,x

m , and consider Ga := {z ∈ Rd
: L(z) > a} for a > 0. Then Ga is typically

unbounded but may be contained in the complement of some sphere, so that we may use the
above transformation. The value of a such that Pn,m(x,Ga) = α, where α is a given quantile,
e.g. 5%, is called the α% Value at Risk.

Generally, straightforward Monte Carlo evaluation of the Value at Risk of a large portfolio is
very time consuming since one needs many sample trajectories to generate a reliable number in
a certain critical region. A forward–reverse approach may therefore be considered as an elegant
solution.
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