Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111084
Название: | Inappropriate Machine Learning Application in Real Power Industry Cases |
Авторы: | Khalyasmaa, A. Matrenin, P. Eroshenko, S. |
Дата публикации: | 2022 |
Издатель: | Institute of Advanced Engineering and Science Institute of Advanced Engineering and Science |
Библиографическое описание: | Khalyasmaa A. Inappropriate Machine Learning Application in Real Power Industry Cases / A. Khalyasmaa, P. Matrenin, S. Eroshenko. — DOI 10.19181/socjour.2021.27.3.8427 // International Journal of Electrical and Computer Engineering. — 2022. — Vol. 12. — Iss. 3. — P. 3023-3032. |
Аннотация: | Global digital transformation of the energy sector has led to the emergence of multiple digital platform solutions, the implementation of which have revealed new problems associated with continuous growth of data volumes requiring new approaches to their processing and analysis. This article is devoted to the improper application of machine learning approaches and flawed interpretation of their output at various stages of decision support systems development: data collection; model development, training and testing as well as industrial implementation. As a real industrial case study, the article examines the power generation forecasting problem of photovoltaic power plants. The authors supplement the revealed problems with the corresponding recommendation for industrial specialists and software developers. © 2022 Institute of Advanced Engineering and Science. All rights reserved. |
Ключевые слова: | DIGITAL TRANSFORMATION INTELLIGENT SYSTEM MACHINE LEARNING APPLICATION PHOTOVOLTAIC POWER PLANTS POWER GENERATION FORECASTING |
URI: | http://elar.urfu.ru/handle/10995/111084 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85126446498 |
Идентификатор PURE: | 29827959 |
ISSN: | 2088-8708 |
DOI: | 10.11591/ijece.v12i3.pp3023-3032 |
Сведения о поддержке: | The reported study was supported by Russian Foundation for Basic Research RFBR, research project No. 20-010-00911. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85126446498.pdf | 572,41 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.