Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/111084
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khalyasmaa, A. | en |
dc.contributor.author | Matrenin, P. | en |
dc.contributor.author | Eroshenko, S. | en |
dc.date.accessioned | 2022-05-12T08:12:37Z | - |
dc.date.available | 2022-05-12T08:12:37Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Khalyasmaa A. Inappropriate Machine Learning Application in Real Power Industry Cases / A. Khalyasmaa, P. Matrenin, S. Eroshenko. — DOI 10.19181/socjour.2021.27.3.8427 // International Journal of Electrical and Computer Engineering. — 2022. — Vol. 12. — Iss. 3. — P. 3023-3032. | en |
dc.identifier.issn | 2088-8708 | - |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111084 | - |
dc.description.abstract | Global digital transformation of the energy sector has led to the emergence of multiple digital platform solutions, the implementation of which have revealed new problems associated with continuous growth of data volumes requiring new approaches to their processing and analysis. This article is devoted to the improper application of machine learning approaches and flawed interpretation of their output at various stages of decision support systems development: data collection; model development, training and testing as well as industrial implementation. As a real industrial case study, the article examines the power generation forecasting problem of photovoltaic power plants. The authors supplement the revealed problems with the corresponding recommendation for industrial specialists and software developers. © 2022 Institute of Advanced Engineering and Science. All rights reserved. | en |
dc.description.sponsorship | The reported study was supported by Russian Foundation for Basic Research RFBR, research project No. 20-010-00911. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Institute of Advanced Engineering and Science | en1 |
dc.publisher | Institute of Advanced Engineering and Science | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Int. J. Electr. Comput. Eng. | 2 |
dc.source | International Journal of Electrical and Computer Engineering | en |
dc.subject | DIGITAL TRANSFORMATION | en |
dc.subject | INTELLIGENT SYSTEM | en |
dc.subject | MACHINE LEARNING APPLICATION | en |
dc.subject | PHOTOVOLTAIC POWER PLANTS | en |
dc.subject | POWER GENERATION FORECASTING | en |
dc.title | Inappropriate Machine Learning Application in Real Power Industry Cases | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.11591/ijece.v12i3.pp3023-3032 | - |
dc.identifier.scopus | 85126446498 | - |
local.contributor.employee | Khalyasmaa, A., Electrical Engineering Department, Ural Federal University, Ekaterinburg, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, Russian Federation; Matrenin, P., Industrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, Russian Federation; Eroshenko, S., Electrical Engineering Department, Ural Federal University, Ekaterinburg, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, Russian Federation | en |
local.description.firstpage | 3023 | - |
local.description.lastpage | 3032 | - |
local.issue | 3 | - |
local.volume | 12 | - |
local.contributor.department | Electrical Engineering Department, Ural Federal University, Ekaterinburg, Russian Federation; Power Plants Department, Novosibirsk State Technical University, Novosibirsk, Russian Federation; Industrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, Russian Federation | en |
local.identifier.pure | 29827959 | - |
local.identifier.eid | 2-s2.0-85126446498 | - |
local.fund.rffi | 20-010-00911 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85126446498.pdf | 572,41 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.