Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/103368
Title: | Mean-square approximation of navier-stokes equations with additive noise in vorticity-velocity formulation |
Authors: | Milstein, G. N. Tretyakov, M. V. |
Issue Date: | 2020 |
Publisher: | Global Science Press |
Citation: | Milstein G. N. Mean-square approximation of navier-stokes equations with additive noise in vorticity-velocity formulation / G. N. Milstein, M. V. Tretyakov. — DOI 10.4208/NMTMA.OA-2020-0034 // Numerical Mathematics. — 2020. — Vol. 14. — Iss. 1. — P. 1-30. |
Abstract: | We consider a time discretization of incompressible Navier-Stokes equations with spatial periodic boundary conditions and additive noise in the vorticityvelocity formulation. The approximation is based on freezing the velocity on time subintervals resulting in a linear stochastic parabolic equation for vorticity. At each time step, the velocity is expressed via vorticity using a formula corresponding to the Biot-Savart-type law. We prove the first mean-square convergence order of the vorticity approximation. © 2021 Global-Science Press. |
Keywords: | MEAN-SQUARE CONVERGENCE NAVIER-STOKES EQUATIONS NUMERICAL METHOD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS VORTICITY |
URI: | http://elar.urfu.ru/handle/10995/103368 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85094668875 |
WOS ID: | 000595073600001 |
PURE ID: | f8b1066d-38d8-4ceb-be78-5f1540dab752 20128180 |
ISSN: | 10048979 |
DOI: | 10.4208/NMTMA.OA-2020-0034 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85094668875.pdf | 220,03 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.