Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102859
Название: | A survey on software defect prediction using deep learning |
Авторы: | Akimova, E. N. Bersenev, A. Yu. Deikov, A. A. Kobylkin, K. S. Konygin, A. V. Mezentsev, I. P. Misilov, V. E. |
Дата публикации: | 2021 |
Издатель: | MDPI AG |
Библиографическое описание: | A survey on software defect prediction using deep learning / E. N. Akimova, A. Yu. Bersenev, A. A. Deikov, et al. — DOI 10.3390/math9111180 // Mathematics. — 2021. — Vol. 9. — Iss. 11. — 1180. |
Аннотация: | Defect prediction is one of the key challenges in software development and programming language research for improving software quality and reliability. The problem in this area is to properly identify the defective source code with high accuracy. Developing a fault prediction model is a challenging problem, and many approaches have been proposed throughout history. The recent breakthrough in machine learning technologies, especially the development of deep learning techniques, has led to many problems being solved by these methods. Our survey focuses on the deep learning techniques for defect prediction. We analyse the recent works on the topic, study the methods for automatic learning of the semantic and structural features from the code, discuss the open problems and present the recent trends in the field. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
Ключевые слова: | ANOMALY DETECTION CODE UNDERSTANDING DEEP LEARNING DEFECT PREDICTION NEURAL NETWORKS PROGRAM ANALYSIS |
URI: | http://elar.urfu.ru/handle/10995/102859 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85107438889 |
Идентификатор WOS: | 000660259900001 |
Идентификатор PURE: | 22106357 7858c6fd-60db-4336-9442-b86674a3a3ae |
ISSN: | 22277390 |
DOI: | 10.3390/math9111180 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85107438889.pdf | 521,26 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.